Skip to main content
Springer Nature Link
Log in

Table 12 Studies on Adoption Intensity in Agriculture

From: Intensity of crop and livestock insurance adoption: lessons from Mexico

Authors

Country

Focus

Statistical Models

Mishra et al. (2018); Thompson et al. (2022); Yang et al. (2022); Bamire et al. (2010); Bopp et al. (2019)

USA/Europe/China/Borno/Chile

Sustainable agricultural practices

Negative Binomial Regression/ Structural Equation Modelling/Endogenous Switching Regression (ESR)/Tobit regression techniques/Poisson

Kolady et al. (2021a); Mozambani et al. (2023); Palma-Molina et al. (2023)

South Dakota/Sao Paulo, Brazil/Ireland

Precision Agriculture Technologies/Precision livestock farming (PLF) technologies

Poisson Regression Model/Count Data Regression Model/Multinomial Logistic Regression

Pedzisa et al. (2015); Ngaiwi et al. (2023); Arslan et al. (2014); Kunzekweguta et al. (2017); Akter et al. (2021)

Zimbabwe/ Eastern and Southern Regions of Cameroon/Zambia/ Bangladesh

Conservation Agriculture Practices

Poisson Regression Model/Multivariate Probit Model/Random effects Tobit and Pooled fractional Probit models/Double hurdle model

Luh et al. (2023)

Taiwan

Organic farming

Spatial Tobit regression analysis

Mujeyi et al. (2022); Mthethwa et al. (2022); Zakaria et al. (2020); Aryal et al. (2018); Sardar et al. (2021); Teklu et al. (2023)

Zimbabwe/South Africa/Northern Ghana/India/Pakistan/Ethiopia

Climate-Smart Agriculture

Poisson Regression Model/Multivariate Probit Model/Random effects Tobit and Pooled fractional Probit models/Double hurdle model

Jara-Rojas et al. (2020); Mgendi et al. (2022); Miine et al. (2023)

Chile/Tanzania/Ghana

Technology Adoption

Cluster Analysis/Poisson Regression Model/Multivariate Probit Model

Oladimeji et al. (2020)

Nigeria

Soil Conservation Practices

Pooled multivariate Probit and random effects ordered Probit

Back to article page

AltStyle によって変換されたページ (->オリジナル) /