Unveiling the mitigation potential of non-CO2 greenhouse gases in global supply chains
- Original Article
- Published:
- Volume 30, article number 76, (2025)
- Cite this article
- Hao-Ben Yan 1 ,
- Lan-Cui Liu 2 &
- Jin Yan 1
-
29 Accesses
Abstract
Non-carbon dioxide (non-CO2) greenhouse gas (GHG) emissions are a significant contributor to climate change. However, the exploration of non-CO2 GHG emissions reduction remains limited. Based on structural path analysis and scenario analysis, this study develops an indicator to identify critical sectors within key inter- and intra-regional supply chains and reveals the mitigation potential of methane (CH4), nitrous oxide (N2O), and fluorinated gases. The results show that for key inter-regional supply chains, non-CO2 GHG emissions driven by the US and the EU rose 57% from 1990 to 2022. In 2022, the petrochemical and food sectors in the US and the EU dominated embodied CH4 and N2O emissions in inter-regional supply chains, driving more than 147 MtCO2-eq of CH4 emissions from mining sectors in Russia and the Middle East (an increase of 42% compared with 1990), and 12 MtCO2-eq of agricultural N2O emissions from Sub-Saharan Africa and Other America (an increase of 118% compared with 1990). The critical sectors in intra-regional supply chains were concentrated in China (mining, manufacturing, petrochemical, and construction sectors) and India (agriculture sector). Considering the supply chain linkages of critical sectors in the US, the EU, China, and India, the mitigation potential of non-CO2 GHG emissions could reach 2,754 MtCO2-eq, which is 1.4 times that of only adopting production-side measures. Thus, to enhance multi-sector efforts in reducing non-CO2 GHG emissions, the US and EU are encouraged to provide more funds and technologies to developing regions such as Sub-Saharan Africa.
This is a preview of subscription content, log in via an institution to check access.
Access this article
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.
Similar content being viewed by others
China’s Non-CO2 Greenhouse Gas Emissions: Future Trajectories and Mitigation Options and Potential
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.Data availability
Data will be made available on request.
References
An M, Prinn RG, Western LM, Zhao X, Yao B, Hu J, Ganesan AL, Mühle J, Weiss RF, Krummel PB (2024) Sustained growth of sulfur hexafluoride emissions in China inferred from atmospheric observations. Nat Commun 15(1):1997. https://doi.org/10.1038/s41467-024-46084-3
Arndt C, Hristov AN, Price WJ, McClelland SC, Pelaez AM, Cueva SF, Oh J, Dijkstra J, Bannink A, Bayat AR (2022) Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 C target by 2030 but not 2050. Proc Natl Acad Sci USA 119(20):e2111294119. https://doi.org/10.1073/pnas.2111294119
Bai F, Jiang P, An M, Zhao X, Chen Z, Zhang X, Hu J (2025) Fluorinated greenhouse gas mitigation potential and routes in China and globally. J Environ Manage 377:124715. https://doi.org/10.1016/j.jenvman.2025.124715
Bakkaloglu S, Cooper J, Hawkes A (2022) Methane emissions along biomethane and biogas supply chains are underestimated. One Earth 5(6):724–736. https://doi.org/10.1016/j.oneear.2022年05月01日2
Branco A, Guizzardi D, Duarte J, Schaaf E, Vignati E, Monforti-Ferrario F, Pagani F, Grassi G, Banja M, Muntean M, Crippa M, Rossi S, William B, Brandao J, San-Miguel-Ayanz J (2023) EDGAR v8.0 Greenhouse gas emissions. European Commission, Joint Research Centre. https://edgar.jrc.ec.europa.eu/dataset_ghg80. Accessed 24 Nov 2024
Charabi Y (2021) Digging deeper into cutting methane emissions from the oil and gas industry in the era of volatile prices. Mitig Adapt Strateg Glob Chang 26:6. https://doi.org/10.1007/s11027-021-09948-3
Chen Z, Balasus N, Lin H, Nesser H, Jacob DJ (2024) African rice cultivation linked to rising methane. Nat Clim Chang 14:148–151. https://doi.org/10.1038/s41558-023-01907-x
Cusworth DH, Duren RM, Ayasse AK, Jiorle R, Howell K, Aubrey A, Green RO, Eastwood ML, Chapman JW, Thorpe AK (2024) Quantifying methane emissions from United States landfills. Science 383(6690):1499–1504. https://doi.org/10.1126/science.adi7735
EPA (2025) The HFC allowance allocation program. https://www.epa.gov/climate-hfcs-reduction/frequent-questions-phasedown-hydrofluorocarbons. Accessed 24 April 2025
Fan JL, Wang Q, Yu S, Hou YB, Wei YM (2017) The evolution of CO2 emissions in international trade for major economies: a perspective from the global supply chain. Mitig Adapt Strateg Glob Change 22:1229–1248. https://doi.org/10.1007/s11027-016-9724-x
Gao H, Gu A, Wang G, Teng F (2019) A structural decomposition analysis of China’s consumption-based greenhouse gas emissions. Energies 12(15):2843. https://doi.org/10.3390/en12152843
Harmsen JHM, van Vuuren DP, Nayak DR, Hof AF, Hoglund-Isaksson L, Lucas PL, Nielsen JB, Smith P, Stehfest E (2019) Long-term marginal abatement cost curves of non-CO2 greenhouse gases. Environ Sci Pol 99:136–149. https://doi.org/10.1016/j.envsci.2019年05月01日3
Harmsen M, Tabak C, Höglund-Isaksson L, Humpenöder F, Purohit P, van Vuuren D (2023) Uncertainty in non-CO2 greenhouse gas mitigation contributes to ambiguity in global climate policy feasibility. Nat Commun 14(1):2949. https://doi.org/10.1038/s41467-023-38577-4
Hong C, Zhao H, Qin Y, Burney JA, Pongratz J, Hartung K, Liu Y, Moore FC, Jackson RB, Zhang Q (2022) Land-use emissions embodied in international trade. Science 376(6593):597–603. https://doi.org/10.1126/science.abj1572
Hou J, Deng X, Springer CH, Teng F (2020) A global analysis of CO2 and non-CO2 GHG emissions embodied in trade with Belt and Road Initiative countries. Ecosyst Health Sustain 6(1):1761888. https://doi.org/10.1080/20964129.2020.1761888
Hou JJ, Wang Z, Zhang JT, Yu SW, Liu LC (2022) Revealing energy and water hidden in Chinese regional critical carbon supply chains. Energy Pol 165:112979. https://doi.org/10.1016/j.enpol.2022.112979
IEA (2023) World energy outlook 2023. https://www.iea.org/reports/world-energy-outlook-2023. Accessed 24 Dec 2024
IPCC (2022) Climate change 2022: mitigation of climate change. https://www.ipcc.ch/report/sixth-assessment-report-working-group-3/. Accessed 24 Dec 2024
Iyer G, Ou Y, Edmonds J, Fawcett AA, Hultman N, McFarland J, Fuhrman J, Waldhoff S, McJeon H (2022) Ratcheting of climate pledges needed to limit peak global warming. Nat Clim Chang 12(12):1129–1135. https://doi.org/10.1038/s41558-022-01508-0
Jiang J, Yin D, Sun Z, Ye B, Zhou N (2024) Global trend of methane abatement inventions and widening mismatch with methane emissions. Nat Clim Chang 14(4):393–401. https://doi.org/10.1038/s41558-024-01947-x
Jones MW, Peters GP, Gasser T, Andrew RM, Schwingshackl C, Gütschow J, Houghton RA, Friedlingstein P, Pongratz J, Le Quéré C (2023) National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Sci Data 10(1):155. https://doi.org/10.1038/s41597-023-02041-1
Lenzen M (2007) Structural path analysis of ecosystem networks. Ecol Model 200(3–4):334–342. https://doi.org/10.1016/j.ecolmodel.2006年07月04日1
Li J, Yang J, Liu M, Ma Z, Fang W, Bi J (2022) Quality matters: pollution exacerbates water scarcity and sectoral output risks in China. Water Res 224:119059. https://doi.org/10.1016/j.watres.2022.119059
Li Y, Zhong H, Shan Y, Hang Y, Wang D, Zhou Y, Hubacek K (2023) Changes in global food consumption increase GHG emissions despite efficiency gains along global supply chains. Nat Food 4(6):483–495. https://doi.org/10.1038/s43016-023-00768-z
Liang S, Qu S, Xu M (2016) Betweenness-based method to identify critical transmission sectors for supply chain environmental pressure mitigation. Environ Sci Technol 50(3):1330–1337. https://doi.org/10.1021/acs.est.5b04855
Lin J, Khanna N, Liu X, Teng F, Wang X (2019) China’s non-CO2 greenhouse gas emissions: future trajectories and mitigation options and potential. Sci Rep 9(1):16095. https://doi.org/10.1038/s41598-019-52653-0
Liu Y, Yan C, Gao J, Wu X, Zhang B (2022) Mapping the changes of CH4 emissions in global supply chains. Sci Total Environ 832:155019. https://doi.org/10.1016/j.scitotenv.2022.155019
Liu S, Liu K, Wang K, Chen X, Wu K (2023) Fossil-fuel and food systems equally dominate anthropogenic methane emissions in China. Environ Sci Technol 57(1):2495–2505. https://doi.org/10.1021/acs.est.2c07933
Liu L, Hu X, Li L, Sun Z, Zhang Q (2024) Understanding China’s agricultural non-carbon-dioxide greenhouse gas emissions: subnational insights and global trade dynamics. Environ Impact Assess Rev 106:107487. https://doi.org/10.1016/j.eiar.2024.107487
Llop M, Ponce-Alifonso X (2015) Identifying the role of final consumption in structural path analysis: an application to water uses. Ecol Econ 109:203–210. https://doi.org/10.1016/j.ecolecon.2014年11月01日1
Long TB, Young W (2016) An exploration of intervention options to enhance the management of supply chain greenhouse gas emissions in the UK. J Clean Prod 112:1834–1848. https://doi.org/10.1016/j.jclepro.2015年02月07日4
Lucas PL, van Vuuren DP, Olivier JGJ, den Elzen MGJ (2007) Long-term reduction potential of non-CO2 greenhouse gases. Environ Sci Policy 10:85–103. https://doi.org/10.1016/j.envsci.200610007
Maasakkers JD, Varon DJ, Elfarsdóttir A, McKeever J, Jervis D, Mahapatra G, Pandey S, Lorente A, Borsdorff T, Foorthuis LR (2022) Using satellites to uncover large methane emissions from landfills. Sci Adv 8:eabn9683. https://doi.org/10.1126/sciadv.abn9683
Malerba ME, de Kluyver T, Wright N, Schuster L, Macreadie PI (2022) Methane emissions from agricultural ponds are underestimated in national greenhouse gas inventories. Commun Earth Environ 3(1):306. https://doi.org/10.1038/s43247-022-00638-9
Malley CS, Borgford-Parnell N, Haeussling S, Howard IC, Lefèvre EN, Kuylenstierna JC (2023) A roadmap to achieve the global methane pledge. Environ Res Climate 2:011003. https://doi.org/10.1088/2752-5295/acb4b4
Mi Z, Zheng J, Meng J, Zheng H, Lie X, Coffman D, Woltjer J, Wang S, Guan D (2019) Carbon emissions of cities from a consumption-based perspective. Appl Energy 235:509–518. https://doi.org/10.1016/j.apenergy.2018年10月13日7
Misra AK, Verma M (2014) Modeling the impact of mitigation options on methane abatement from rice fields. Mitig Adapt Strateg Glob Change 19(7):927–945. https://doi.org/10.1007/s11027-013-9451-5
Motoshita M, Pfister S, Sasaki T, Nansai K, Hashimoto S, Yokoi R, Islam K, Finkbeiner M (2023) Responsibility for sustainable water consumption in the global supply chains. Resour Conserv Recycl 196:107055. https://doi.org/10.1016/j.resconrec.2023.107055
Nagashima F (2018) Critical structural paths of residential PM2. 5 emissions within the Chinese provinces. Energy Econ 70:465–471. https://doi.org/10.1016/j.eneco.2018年01月03日3
Olczak M, Piebalgs A, Balcombe P (2023) A global review of methane policies reveals that only 13% of emissions are covered with unclear effectiveness. One Earth 6(5):519–535. https://doi.org/10.1016/j.oneear.202304009
Ou Y, Roney C, Alsalam J, Calvin K, Creason J, Edmonds J, Fawcett AA, Kyle P, Narayan K, O’Rourke P (2021) Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5° C and 2° C futures. Nat Commun 12(1):6245. https://doi.org/10.1038/s41467-021-26509-z
Ou Y, Iyer G, Fawcett A, Hultman N, McJeon H, Ragnauth S, Smith SJ, Edmonds J (2022) Role of non-CO2 greenhouse gas emissions in limiting global warming. One Earth 5(12):1312–1315. https://doi.org/10.1016/j.oneear.2022年11月01日2
Owen A, Scott K, Barrett J (2018) Identifying critical supply chains and final products: an input-output approach to exploring the energy-water-food nexus. Appl Energy 210:632–642. https://doi.org/10.1016/j.apenergy.2017年09月06日9
Purohit P, Borgford-Parnell N, Klimont Z, Höglund-Isaksson L (2022) Achieving Paris climate goals calls for increasing ambition of the Kigali Amendment. Nat Clim Chang 12:339–342. https://doi.org/10.1038/s41558-022-01310-y
Qi J, Wang Y, Liang S, Li Y, Li Y, Feng C, Xu L, Wang S, Chen L, Wang D (2019) Primary suppliers driving atmospheric mercury emissions through global supply chains. One Earth 1(2):254–266. https://doi.org/10.1016/j.oneear.201910005
Roe S, Streck C, Beach R, Busch J, Chapman M, Daioglou V, Deppermann A, Doelman J, Emmet-Booth J, Engelmann J, Fricko O, Frischmann C, Funk J, Grassi G, Griscom B, Havlik P, Hanssen S, Humpenöder F, Landholm D, Lomax G, Mesnildrey L, Nabuurs G-J, Popp A, Rivard C, Sanderman J, Sohngen B, Smith P, Stehfest E, Woolf D, Lawrence D (2021) Land-based measures to mitigate climate change: potential and feasibility by country. Glob Chang Biol 27(23):6025–6058. https://doi.org/10.1111/gcb.15873
Seketeme M, Madibela OR, Khumoetsile T, Rugoho R (2022) Ruminant contribution to enteric methane emissions and possible mitigation strategies in the Southern Africa Development Community region. Mitig Adapt Strateg Glob Chang 27:47. https://doi.org/10.1007/s11027-022-10026-5
Shen L, Jacob DJ, Gautam R, Omara M, Scarpelli TR, Lorente A, Zavala-Araiza D, Lu X, Chen Z, Lin J (2023) National quantifications of methane emissions from fuel exploitation using high resolution inversions of satellite observations. Nat Commun 14(1):4948. https://doi.org/10.1038/s41467-023-40671-6
Sherwin ED, Rutherford JS, Zhang Z, Chen Y, Wetherley EB, Yakovlev PV, Berman ES, Jones BB, Cusworth DH, Thorpe AK (2024) Us oil and gas system emissions from nearly one million aerial site measurements. Nature 627(8003):328–334. https://doi.org/10.1038/s41586-024-07117-5
Shi J, Li H, An H, Guan J, Arif A (2019) Tracing carbon emissions embodied in 2012 Chinese supply chains. J Clean Prod 226:28–36. https://doi.org/10.1016/j.jclepro.2019年04月01日5
Teng F, Su X, Wang X (2019) Can China peak its non-CO2 GHG emissions before 2030 by implementing its nationally determined contribution? Environ Sci Technol 53(21):12168–12176. https://doi.org/10.1021/acs.est.9b04162
Tibrewal K, Ciais P, Saunois M, Martinez A, Lin X, Thanwerdas J, Deng Z, Chevallier F, Giron C, Albergel C (2024) Assessment of methane emissions from oil, gas and coal sectors across inventories and atmospheric inversions. Commun Earth Environ 5(1):26. https://doi.org/10.1038/s43247-023-01190-w
UNFCCC (2021) Glasgow climate pact https://unfccc.int/documents/310475. Accessed 24 April 2025
van Heerden R, Edelenbosch OY, Daioglou V, Le Gallic T, Baptista LB, Di Bella A, Colelli FP, Emmerling J, Fragkos P, Hasse R, Hoppe J, Kishimoto P, Leblanc F, Lefèvre J, Luderer G, Marangoni G, Mastrucci A, Pettifor H, Pietzcker R, Rochedo P, van Ruijven B, Schaeffer R, Wilson C, Yeh S, Zisarou E, van Vuuren D (2025) Demand-side strategies enable rapid and deep cuts in buildings and transport emissions to 2050. Nat Energy 10:380–394. https://doi.org/10.1038/s41560-025-01703-1
Velders GJ, Fahey DW, Daniel JS, Andersen SO, McFarland M (2015) Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions. Atmos Environ 123:200–209. https://doi.org/10.1016/j.atmosenv.2015年10月07日1
Velders GJ, Daniel JS, Montzka SA, Vimont I, Rigby M, Krummel PB, Muhle J, O’Doherty S, Prinn RG, Weiss RF (2022) Projections of hydrofluorocarbon (HFC) emissions and the resulting global warming based on recent trends in observed abundances and current policies. Atmos Chem Phys 22(9):6087–6101. https://doi.org/10.5194/acp-22-6087-2022
Wang Y, Chen B, Guan C, Zhang B (2019) Evolution of methane emissions in global supply chains during 2000–2012. Resour Conserv Recycl 150:104414. https://doi.org/10.1016/j.resconrec.2019.104414
Wei J, Jiang T, Ménager P, Kim DG, Dong W (2025) COP29: progresses and challenges to global efforts on the climate crisis. Innovation (Camb) 6(1):100748. https://doi.org/10.1016/j.xinn.2024.100748
Wood R, Lenzen M (2003) An application of a modified ecological footprint method and structural path analysis in a comparative institutional study. Local Environ 8(4):365–386. https://doi.org/10.1080/13549830306670
Wu J, Li T, Wang J, Zhang D, Peng L (2021) Establishment of HCFC-22 national–provincial–gridded emission inventories in China and the analysis of emission reduction potential. Environ Sci Technol 56(2):814–822. https://doi.org/10.1021/acs.est.1c07344
Xu D, Zhang Y, Chen B, Bai J, Liu G, Zhang B (2022) Identifying the critical paths and sectors for carbon transfers driven by global consumption in 2015. Appl Energy 306:118137. https://doi.org/10.1016/j.apenergy.2021.118137
Xuan X, Zhang F, Deng X, Bai Y (2023) Measurement and spatio-temporal transfer of greenhouse gas emissions from agricultural sources in China: a food trade perspective. Resour Conserv Recycl 197:107100. https://doi.org/10.1016/j.resconrec.2023.107100
Yan HB, Liu LC, Kang JN, Yan J, Li WL (2024) Non-carbon dioxide emissions modeling in integrated assessment models: a review. Energy Strategy Rev 52:101358. https://doi.org/10.1016/j.esr.2024.101358
Yang Z, Dong W, Xiu J, Dai R, Chou J (2015) Structural path analysis of fossil fuel based CO2 emissions: a case study for China. PLoS ONE 10(9):e0135727. https://doi.org/10.1371/journal.pone.0135727
Yang X, Zhang W, Fan J, Li J, Meng J (2018) The temporal variation of SO2 emissions embodied in Chinese supply chains, 2002–2012. Environ Pollut 241:172–181. https://doi.org/10.1016/j.envpol.2018年05月05日2
Yang J, Tang L, Mi Z, Liu S, Li L, Zheng J (2019) Carbon emissions performance in logistics at the city level. J Clean Prod 231:1258–1266. https://doi.org/10.1016/j.jclepro.201905330
Yao Z, Guo H, Wang Y, Zhan Y, Zhang T, Wang R, Zheng X, Butterbach-Bahl K (2024) A global meta-analysis of yield-scaled N2O emissions and its mitigation efforts for maize, wheat, and rice. Glob Chang Biol 30(2):e17177. https://doi.org/10.1111/gcb.17177
You K, Ren H, Cai W, Huang R, Li Y (2023) Modeling carbon emissions of China’s building sector toward 2060. Resour Conserv Recycl 188:106679. https://doi.org/10.1016/j.resconrec.2022.106679
Zhang B, Qu X, Meng J, Sun X (2017) Identifying primary energy requirements in structural path analysis: a case study of China 2012. Appl Energy 191:425–435. https://doi.org/10.1016/j.apenergy.2017年01月06日6
Zhang B, Zhao X, Wu X, Han M, Guan CH, Song S (2018) Consumption-based accounting of global anthropogenic CH4 emissions. Earths Future 6(9):1349–1363. https://doi.org/10.1029/2018EF000917
Funding
This work was supported by the National Natural Science Foundation of China [grant number 72073014] and National Social Science Fund Key Project [grant number 22AZD094].
Ethics declarations
Competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yan, HB., Liu, LC. & Yan, J. Unveiling the mitigation potential of non-CO2 greenhouse gases in global supply chains. Mitig Adapt Strateg Glob Change 30, 76 (2025). https://doi.org/10.1007/s11027-025-10264-3
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1007/s11027-025-10264-3
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative