Share via

Facebook x.com LinkedIn Email

find_end

Looks in a range for the last subsequence that is identical to a specified sequence or that is equivalent in a sense specified by a binary predicate.

template<class ForwardIterator1, class ForwardIterator2>
 ForwardIterator1 find_end(
 ForwardIterator1 _First1, 
 ForwardIterator1 _Last1,
 ForwardIterator2 _First2, 
 ForwardIterator2 _Last2
 );
template<class ForwardIterator1, class ForwardIterator2, class Pred>
 ForwardIterator1 find_end(
 ForwardIterator1 _First1, 
 ForwardIterator1 _Last1,
 ForwardIterator2 _First2, 
 ForwardIterator2 _Last2,
 Pred _Comp
 );

Parameters

  • _First1
    A forward iterator addressing the position of the first element in the range to be searched.

  • _Last1
    A forward iterator addressing the position one past the final element in the range to be searched.

  • _First2
    A forward iterator addressing the position of the first element in the range to be searched.

  • _Last2
    A forward iterator addressing the position one past the final element in the range to be searched.

  • _Comp
    User-defined predicate function object that defines the condition to be satisfied if two elements are to be taken as equivalent. A binary predicate takes two arguments and returns true when satisfied and false when not satisfied.

Return Value

A forward iterator addressing the position of the first element of the last subsequence that matches the specified sequence or that is equivalent in a sense specified by a binary predicate.

Remarks

The operator== used to determine the match between an element and the specified value must impose an equivalence relation between its operands.

The ranges referenced must be valid; all pointers must be dereferenceable and, within each sequence, the last position is reachable from the first by incrementation.

Example

// alg_find_end.cpp
// compile with: /EHsc
#include <vector>
#include <list>
#include <algorithm>
#include <iostream>
// Return whether second element is twice the first
bool twice ( int elem1, int elem2 )
{
 return 2 * elem1 == elem2;
}
int main( )
{
 using namespace std;
 vector <int> v1, v2;
 list <int> L1;
 vector <int>::iterator Iter1, Iter2;
 list <int>::iterator L1_Iter, L1_inIter;
 int i;
 for ( i = 0 ; i <= 5 ; i++ )
 {
 v1.push_back( 5 * i );
 }
 for ( i = 0 ; i <= 5 ; i++ )
 {
 v1.push_back( 5 * i );
 }
 int ii;
 for ( ii = 1 ; ii <= 4 ; ii++ )
 {
 L1.push_back( 5 * ii );
 }
 int iii;
 for ( iii = 2 ; iii <= 4 ; iii++ )
 {
 v2.push_back( 10 * iii );
 }
 cout << "Vector v1 = ( " ;
 for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )
 cout << *Iter1 << " ";
 cout << ")" << endl;
 cout << "List L1 = ( " ;
 for ( L1_Iter = L1.begin( ) ; L1_Iter!= L1.end( ) ; L1_Iter++ )
 cout << *L1_Iter << " ";
 cout << ")" << endl;
 cout << "Vector v2 = ( " ;
 for ( Iter2 = v2.begin( ) ; Iter2 != v2.end( ) ; Iter2++ )
 cout << *Iter2 << " ";
 cout << ")" << endl;
 // Searching v1 for a match to L1 under identity
 vector <int>::iterator result1;
 result1 = find_end ( v1.begin( ), v1.end( ), L1.begin( ), L1.end( ) );
 if ( result1 == v1.end( ) )
 cout << "There is no match of L1 in v1."
 << endl;
 else
 cout << "There is a match of L1 in v1 that begins at "
 << "position "<< result1 - v1.begin( ) << "." << endl;
 // Searching v1 for a match to L1 under the binary predicate twice
 vector <int>::iterator result2;
 result2 = find_end ( v1.begin( ), v1.end( ), v2.begin( ), v2.end( ), twice );
 if ( result2 == v1.end( ) )
 cout << "There is no match of L1 in v1."
 << endl;
 else
 cout << "There is a sequence of elements in v1 that "
 << "are equivalent to those\n in v2 under the binary "
 << "predicate twice and that begins at position "
 << result2 - v1.begin( ) << "." << endl;
}

Vector v1 = ( 0 5 10 15 20 25 0 5 10 15 20 25 ) List L1 = ( 5 10 15 20 ) Vector v2 = ( 20 30 40 ) There is a match of L1 in v1 that begins at position 7. There is a sequence of elements in v1 that are equivalent to those in v2 under the binary predicate twice and that begins at position 8.

Requirements

Header: <algorithm>

Namespace: std

See Also

Reference

Standard Template Library

Other Resources

<algorithm> Members


  • Last updated on 2012年11月16日