src/Development/Shake/Internal/Core/Run.hs
{-# LANGUAGE RecordWildCards, ScopedTypeVariables, PatternGuards #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE TypeFamilies #-}
module Development.Shake.Internal.Core.Run(
run,
Action, actionOnException, actionFinally, apply, apply1, traced,
getDatabaseValue,
getShakeOptions, getProgress,
getVerbosity, putLoud, putNormal, putQuiet, withVerbosity, quietly,
Resource, newResourceIO, withResource, newThrottleIO,
newCacheIO,
unsafeExtraThread, unsafeAllowApply,
parallel,
orderOnlyAction,
batch,
runAfter
) where
import Control.Exception
import Control.Applicative
import Data.Tuple.Extra
import Control.Concurrent.Extra
import Control.Monad.Extra
import Control.Monad.IO.Class
import Data.Typeable.Extra
import Data.Function
import Data.Either.Extra
import Data.List.Extra
import qualified Data.HashMap.Strict as Map
import Data.Dynamic
import Data.Maybe
import Data.IORef
import System.Directory
import System.IO.Extra
import System.Time.Extra
import Numeric.Extra
import qualified Data.ByteString as BS
import Development.Shake.Classes
import Development.Shake.Internal.Core.Types
import Development.Shake.Internal.Core.Action
import Development.Shake.Internal.Core.Rules
import Development.Shake.Internal.Core.Pool
import Development.Shake.Internal.Core.Database
import Development.Shake.Internal.Core.Monad
import Development.Shake.Internal.Resource
import Development.Shake.Internal.Value
import Development.Shake.Internal.Profile
import Development.Shake.Internal.Options
import Development.Shake.Internal.Errors
import General.Timing
import General.Extra
import General.Concurrent
import General.Cleanup
import Prelude
---------------------------------------------------------------------
-- MAKE
-- | Internal main function (not exported publicly)
run :: ShakeOptions -> Rules () -> IO ()
run opts@ShakeOptions{..} rs = (if shakeLineBuffering then withLineBuffering else id) $ do
opts@ShakeOptions{..} <- if shakeThreads /= 0 then return opts else do p <- getProcessorCount; return opts{shakeThreads=p}
start <- offsetTime
(actions, ruleinfo, userRules) <- runRules opts rs
outputLocked <- do
lock <- newLock
return $ \v msg -> withLock lock $ shakeOutput v msg
let diagnostic | shakeVerbosity < Diagnostic = const $ return ()
| otherwise = \act -> do v <- act; outputLocked Diagnostic $ "% " ++ v
let output v = outputLocked v . shakeAbbreviationsApply opts
diagnostic $ return "Starting run"
except <- newIORef (Nothing :: Maybe (String, ShakeException))
let raiseError err
| not shakeStaunch = throwIO err
| otherwise = do
let named = shakeAbbreviationsApply opts . shakeExceptionTarget
atomicModifyIORef except $ \v -> (Just $ fromMaybe (named err, err) v, ())
-- no need to print exceptions here, they get printed when they are wrapped
curdir <- getCurrentDirectory
diagnostic $ return "Starting run 2"
checkShakeExtra shakeExtra
after <- newIORef []
absent <- newIORef []
withCleanup $ \cleanup -> do
addCleanup_ cleanup $ do
when (shakeTimings && shakeVerbosity >= Normal) printTimings
resetTimings -- so we don't leak memory
withNumCapabilities shakeThreads $ do
diagnostic $ return "Starting run 3"
withDatabase opts diagnostic (Map.map builtinKey ruleinfo) $ \database -> do
wait <- newBarrier
let getProgress = do
failure <- fmap fst <$> readIORef except
stats <- progress database
return stats{isFailure=failure}
tid <- flip forkFinally (const $ signalBarrier wait ()) $
shakeProgress getProgress
addCleanup_ cleanup $ do
killThread tid
void $ timeout 1 $ waitBarrier wait
addTiming "Running rules"
runPool (shakeThreads == 1) shakeThreads $ \pool -> do
let s0 = Global database pool cleanup start ruleinfo output opts diagnostic curdir after absent getProgress userRules
let s1 = newLocal emptyStack shakeVerbosity
forM_ actions $ \act ->
addPoolStart pool $ runAction s0 s1 act $ \x -> case x of
Left e -> raiseError =<< shakeException s0 ["Top-level action/want"] e
Right x -> return x
maybe (return ()) (throwIO . snd) =<< readIORef except
assertFinishedDatabase database
let putWhen lvl msg = when (shakeVerbosity >= lvl) $ output lvl msg
when (null actions) $
putWhen Normal "Warning: No want/action statements, nothing to do"
when (isJust shakeLint) $ do
addTiming "Lint checking"
lintCurrentDirectory curdir "After completion"
absent <- readIORef absent
checkValid database (runLint ruleinfo) absent
putWhen Loud "Lint checking succeeded"
when (shakeReport /= []) $ do
addTiming "Profile report"
report <- toReport database
forM_ shakeReport $ \file -> do
putWhen Normal $ "Writing report to " ++ file
writeProfile file report
when (shakeLiveFiles /= []) $ do
addTiming "Listing live"
live <- listLive database
let specialIsFileKey t = show (fst $ splitTyConApp t) == "FileQ"
let liveFiles = [show k | k <- live, specialIsFileKey $ typeKey k]
forM_ shakeLiveFiles $ \file -> do
putWhen Normal $ "Writing live list to " ++ file
(if file == "-" then putStr else writeFile file) $ unlines liveFiles
after <- readIORef after
unless (null after) $ do
addTiming "Running runAfter"
sequence_ $ reverse after
checkShakeExtra :: Map.HashMap TypeRep Dynamic -> IO ()
checkShakeExtra mp = do
let bad = [(k,t) | (k,v) <- Map.toList mp, let t = dynTypeRep v, t /= k]
case bad of
(k,t):xs -> errorStructured "Invalid Map in shakeExtra"
[("Key",Just $ show k),("Value type",Just $ show t)]
(if null xs then "" else "Plus " ++ show (length xs) ++ " other keys")
_ -> return ()
lintCurrentDirectory :: FilePath -> String -> IO ()
lintCurrentDirectory old msg = do
now <- getCurrentDirectory
when (old /= now) $ errorStructured
"Lint checking error - current directory has changed"
[("When", Just msg)
,("Wanted",Just old)
,("Got",Just now)]
""
withLineBuffering :: IO a -> IO a
withLineBuffering act = do
-- instead of withBuffering avoid two finally handlers and stack depth
out <- hGetBuffering stdout
err <- hGetBuffering stderr
if out == LineBuffering && err == LineBuffering then act else do
hSetBuffering stdout LineBuffering
hSetBuffering stderr LineBuffering
act `finally` do
hSetBuffering stdout out
hSetBuffering stderr err
getDatabaseValue :: (RuleResult key ~ value, ShakeValue key, Typeable value) => key -> Action (Maybe (Either BS.ByteString value))
getDatabaseValue k = do
global@Global{..} <- Action getRO
liftIO $ fmap (fmap $ fmap fromValue) $ lookupStatus globalDatabase $ newKey k
-- | Execute a rule, returning the associated values. If possible, the rules will be run in parallel.
-- This function requires that appropriate rules have been added with 'addUserRule'.
-- All @key@ values passed to 'apply' become dependencies of the 'Action'.
apply :: (RuleResult key ~ value, ShakeValue key, Typeable value) => [key] -> Action [value]
-- Don't short-circuit [] as we still want error messages
apply (ks :: [key]) = withResultType $ \(p :: Maybe (Action [value])) -> do
-- this is the only place a user can inject a key into our world, so check they aren't throwing
-- in unevaluated bottoms
liftIO $ mapM_ (evaluate . rnf) ks
let tk = typeRep (Proxy :: Proxy key)
tv = typeRep (Proxy :: Proxy value)
Global{..} <- Action getRO
block <- Action $ getsRW localBlockApply
whenJust block $ liftIO . errorNoApply tk (show <$> listToMaybe ks)
case Map.lookup tk globalRules of
Nothing -> liftIO $ errorNoRuleToBuildType tk (show <$> listToMaybe ks) (Just tv)
Just BuiltinRule{builtinResult=tv2} | tv /= tv2 -> errorInternal $ "result type does not match, " ++ show tv ++ " vs " ++ show tv2
_ -> fmap (map fromValue) $ applyKeyValue $ map newKey ks
applyKeyValue :: [Key] -> Action [Value]
applyKeyValue [] = return []
applyKeyValue ks = do
global@Global{..} <- Action getRO
stack <- Action $ getsRW localStack
(dur, dep, vs) <- Action $ captureRAW $ build globalPool globalDatabase (BuildKey $ runKey global) stack ks
Action $ modifyRW $ \s -> s{localDiscount=localDiscount s + dur, localDepends=dep : localDepends s}
return vs
runKey :: Global -> Stack -> Step -> Key -> Maybe (Result BS.ByteString) -> Bool -> Capture (Either SomeException (Bool, BS.ByteString, Result Value))
runKey global@Global{globalOptions=ShakeOptions{..},..} stack step k r dirtyChildren continue = do
let tk = typeKey k
BuiltinRule{..} <- case Map.lookup tk globalRules of
Nothing -> errorNoRuleToBuildType tk (Just $ show k) Nothing
Just r -> return r
let s = newLocal stack shakeVerbosity
time <- offsetTime
runAction global s (do
res <- builtinRun k (fmap result r) dirtyChildren
liftIO $ evaluate $ rnf res
when (Just LintFSATrace == shakeLint) trackCheckUsed
Action $ fmap ((,) res) getRW) $ \x -> case x of
Left e -> do
e <- if isNothing shakeLint then return e else handle return $
do lintCurrentDirectory globalCurDir $ "Running " ++ show k; return e
continue . Left . toException =<< shakeException global (showStack stack) e
Right (RunResult{..}, Local{..})
| runChanged == ChangedNothing || runChanged == ChangedStore, Just r <- r ->
continue $ Right (runChanged == ChangedStore, runStore, r{result = runValue})
| otherwise -> do
dur <- time
let c | Just r <- r, runChanged == ChangedRecomputeSame = changed r
| otherwise = step
continue $ Right $ (,,) True runStore Result
{result = runValue
,changed = c
,built = step
,depends = nubDepends $ reverse localDepends
,execution = doubleToFloat $ dur - localDiscount
,traces = reverse localTraces}
runLint :: Map.HashMap TypeRep BuiltinRule -> Key -> Value -> IO (Maybe String)
runLint mp k v = case Map.lookup (typeKey k) mp of
Nothing -> return Nothing
Just BuiltinRule{..} -> builtinLint k v
-- | Turn a normal exception into a ShakeException, giving it a stack and printing it out if in staunch mode.
-- If the exception is already a ShakeException (e.g. it's a child of ours who failed and we are rethrowing)
-- then do nothing with it.
shakeException :: Global -> [String] -> SomeException -> IO ShakeException
shakeException Global{globalOptions=ShakeOptions{..},..} stk e@(SomeException inner) = case cast inner of
Just e@ShakeException{} -> return e
Nothing -> do
e <- return $ ShakeException (last $ "Unknown call stack" : stk) stk e
when (shakeStaunch && shakeVerbosity >= Quiet) $
globalOutput Quiet $ show e ++ "Continuing due to staunch mode"
return e
-- | Apply a single rule, equivalent to calling 'apply' with a singleton list. Where possible,
-- use 'apply' to allow parallelism.
apply1 :: (RuleResult key ~ value, ShakeValue key, Typeable value) => key -> Action value
apply1 = fmap head . apply . return
---------------------------------------------------------------------
-- RESOURCES
-- | Run an action which uses part of a finite resource. For more details see 'Resource'.
-- You cannot depend on a rule (e.g. 'need') while a resource is held.
withResource :: Resource -> Int -> Action a -> Action a
withResource r i act = do
Global{..} <- Action getRO
liftIO $ globalDiagnostic $ return $ show r ++ " waiting to acquire " ++ show i
offset <- liftIO offsetTime
Action $ captureRAW $ \continue -> acquireResource r globalPool i $ continue $ Right ()
res <- Action $ tryRAW $ fromAction $ blockApply ("Within withResource using " ++ show r) $ do
offset <- liftIO offset
liftIO $ globalDiagnostic $ return $ show r ++ " acquired " ++ show i ++ " in " ++ showDuration offset
Action $ modifyRW $ \s -> s{localDiscount = localDiscount s + offset}
act
liftIO $ releaseResource r globalPool i
liftIO $ globalDiagnostic $ return $ show r ++ " released " ++ show i
Action $ either throwRAW return res
-- | A version of 'Development.Shake.newCache' that runs in IO, and can be called before calling 'Development.Shake.shake'.
-- Most people should use 'Development.Shake.newCache' instead.
newCacheIO :: (Eq k, Hashable k) => (k -> Action v) -> IO (k -> Action v)
newCacheIO (act :: k -> Action v) = do
var :: Var (Map.HashMap k (Fence (Either SomeException ([Depends],v)))) <- newVar Map.empty
return $ \key ->
join $ liftIO $ modifyVar var $ \mp -> case Map.lookup key mp of
Just bar -> return $ (,) mp $ do
res <- liftIO $ testFence bar
(res,offset) <- case res of
Just res -> return (res, 0)
Nothing -> do
pool <- Action $ getsRO globalPool
offset <- liftIO offsetTime
Action $ captureRAW $ \k -> waitFence bar $ \v ->
addPoolResume pool $ do offset <- liftIO offset; k $ Right (v,offset)
case res of
Left err -> Action $ throwRAW err
Right (deps,v) -> do
Action $ modifyRW $ \s -> s{localDepends = deps ++ localDepends s, localDiscount = localDiscount s + offset}
return v
Nothing -> do
bar <- newFence
return $ (,) (Map.insert key bar mp) $ do
pre <- Action $ getsRW localDepends
res <- Action $ tryRAW $ fromAction $ act key
case res of
Left err -> do
liftIO $ signalFence bar $ Left err
Action $ throwRAW err
Right v -> do
post <- Action $ getsRW localDepends
let deps = take (length post - length pre) post
liftIO $ signalFence bar $ Right (deps, v)
return v
-- | Run an action without counting to the thread limit, typically used for actions that execute
-- on remote machines using barely any local CPU resources.
-- Unsafe as it allows the 'shakeThreads' limit to be exceeded.
-- You cannot depend on a rule (e.g. 'need') while the extra thread is executing.
-- If the rule blocks (e.g. calls 'withResource') then the extra thread may be used by some other action.
-- Only really suitable for calling 'cmd' / 'command'.
unsafeExtraThread :: Action a -> Action a
unsafeExtraThread act = Action $ do
Global{..} <- getRO
stop <- liftIO $ increasePool globalPool
res <- tryRAW $ fromAction $ blockApply "Within unsafeExtraThread" act
liftIO stop
captureRAW $ \continue -> (if isLeft res then addPoolException else addPoolResume) globalPool $ continue res
-- | Execute a list of actions in parallel. In most cases 'need' will be more appropriate to benefit from parallelism.
parallel :: [Action a] -> Action [a]
-- Note: There is no parallel_ unlike sequence_ because there is no stack benefit to doing so
parallel [] = return []
parallel [x] = fmap return x
parallel acts = Action $ do
global@Global{..} <- getRO
local <- getRW
-- number of items still to complete, or Nothing for has completed (by either failure or completion)
todo :: Var (Maybe Int) <- liftIO $ newVar $ Just $ length acts
-- a list of refs where the results go
results :: [IORef (Maybe (Either SomeException (Local, a)))] <- liftIO $ replicateM (length acts) $ newIORef Nothing
(locals, results) <- captureRAW $ \continue -> do
let resume = do
res <- liftIO $ sequence . catMaybes <$> mapM readIORef results
continue $ fmap unzip res
liftIO $ forM_ (zip acts results) $ \(act, result) -> do
let act2 = do
whenM (liftIO $ isNothing <$> readVar todo) $
fail "parallel, one has already failed"
res <- act
old <- Action getRW
return (old, res)
addPoolResume globalPool $ runAction global (localClearMutable local) act2 $ \res -> do
writeIORef result $ Just res
modifyVar_ todo $ \v -> case v of
Nothing -> return Nothing
Just i | i == 1 || isLeft res -> do resume; return Nothing
Just i -> return $ Just $ i - 1
modifyRW $ \root -> localMergeMutable root locals
return results
-- | Run an action but do not depend on anything the action uses.
-- A more general version of 'orderOnly'.
orderOnlyAction :: Action a -> Action a
orderOnlyAction act = Action $ do
pre <- getsRW localDepends
res <- fromAction act
modifyRW $ \s -> s{localDepends=pre}
return res
-- | Batch different outputs into a single 'Action', typically useful when a command has a high
-- startup cost - e.g. @apt-get install foo bar baz@ is a lot cheaper than three separate
-- calls to @apt-get install@. As an example, if we have a standard build rule:
--
-- @
-- \"*.out\" 'Development.Shake.%>' \\out -> do
-- 'Development.Shake.need' [out '-<.>' \"in\"]
-- 'Development.Shake.cmd' "build-multiple" [out '-<.>' \"in\"]
-- @
--
-- Assuming that @build-multiple@ can compile multiple files in a single run,
-- and that the cost of doing so is a lot less than running each individually,
-- we can write:
--
-- @
-- 'batch' 3 (\"*.out\" 'Development.Shake.%>')
-- (\\out -> do 'Development.Shake.need' [out '-<.>' \"in\"]; return out)
-- (\\outs -> 'Development.Shake.cmd' "build-multiple" [out '-<.>' \"in\" | out \<- outs])
-- @
--
-- In constrast to the normal call, we have specified a maximum batch size of 3,
-- an action to run on each output individually (typically all the 'need' dependencies),
-- and an action that runs on multiple files at once. If we were to require lots of
-- @*.out@ files, they would typically be built in batches of 3.
--
-- If Shake ever has nothing else to do it will run batches before they are at the maximum,
-- so you may see much smaller batches, especially at high parallelism settings.
batch
:: Int
-> ((a -> Action ()) -> Rules ())
-> (a -> Action b)
-> ([b] -> Action ())
-> Rules ()
batch mx pred one many
| mx <= 0 = error $ "Can't call batchable with <= 0, you used " ++ show mx
| mx == 1 = pred $ \a -> do b <- one a; many [b]
| otherwise = do
todo :: IORef (Int, [(b, Either SomeException Local -> IO ())]) <- liftIO $ newIORef (0, [])
pred $ \a -> Action $ do
b <- fromAction $ one a
-- optimisation would be to avoid taking the continuation if count >= mx
-- but it only saves one pool requeue per mx, which is likely to be trivial
-- and the code becomes a lot more special cases
global@Global{..} <- getRO
local <- getRW
local2 <- captureRAW $ \k -> do
count <- atomicModifyIORef todo $ \(count, bs) -> ((count+1, (b,k):bs), count+1)
-- only trigger on the edge so we don't have lots of waiting pool entries
(if count == mx then addPoolResume else if count == 1 then addPoolBatch else none)
globalPool $ go global (localClearMutable local) todo
modifyRW $ \root -> localMergeMutable root [local2]
where
none _ _ = return ()
go global@Global{..} local todo = do
(now, count) <- atomicModifyIORef todo $ \(count, bs) ->
if count <= mx then
((0, []), (bs, 0))
else
let (xs,ys) = splitAt mx bs
in ((count - mx, ys), (xs, count - mx))
(if count >= mx then addPoolResume else if count > 0 then addPoolBatch else none)
globalPool $ go global local todo
unless (null now) $
runAction global local (do many $ map fst now; Action getRW) $ \x ->
forM_ now $ \(_,k) ->
(if isLeft x then addPoolException else addPoolResume) globalPool $ k x