GHC/Int.hs

{-# OPTIONS_GHC -XNoImplicitPrelude #-}
{-# OPTIONS_HADDOCK hide #-}
-----------------------------------------------------------------------------
-- |
-- Module : GHC.Int
-- Copyright : (c) The University of Glasgow 1997-2002
-- License : see libraries/base/LICENSE
-- 
-- Maintainer : cvs-ghc@haskell.org
-- Stability : internal
-- Portability : non-portable (GHC Extensions)
--
-- The sized integral datatypes, 'Int8', 'Int16', 'Int32', and 'Int64'.
--
-----------------------------------------------------------------------------

#include "MachDeps.h"

-- #hide
module GHC.Int (
 Int8(..), Int16(..), Int32(..), Int64(..),
 uncheckedIShiftL64#, uncheckedIShiftRA64#
 ) where

import Data.Bits

#if WORD_SIZE_IN_BITS < 32
import GHC.IntWord32
#endif
#if WORD_SIZE_IN_BITS < 64
import GHC.IntWord64
#endif

import GHC.Base
import GHC.Enum
import GHC.Num
import GHC.Real
import GHC.Read
import GHC.Arr
import GHC.Err
import GHC.Word hiding (uncheckedShiftL64#, uncheckedShiftRL64#)
import GHC.Show
import GHC.Float () -- for RealFrac methods

------------------------------------------------------------------------
-- type Int8
------------------------------------------------------------------------

-- Int8 is represented in the same way as Int. Operations may assume
-- and must ensure that it holds only values from its logical range.

data Int8 = I8# Int# deriving (Eq, Ord)
-- ^ 8-bit signed integer type

instance Show Int8 where
 showsPrec p x = showsPrec p (fromIntegral x :: Int)

instance Num Int8 where
 (I8# x#) + (I8# y#) = I8# (narrow8Int# (x# +# y#))
 (I8# x#) - (I8# y#) = I8# (narrow8Int# (x# -# y#))
 (I8# x#) * (I8# y#) = I8# (narrow8Int# (x# *# y#))
 negate (I8# x#) = I8# (narrow8Int# (negateInt# x#))
 abs x | x >= 0 = x
 | otherwise = negate x
 signum x | x > 0 = 1
 signum 0 = 0
 signum _ = -1
 fromInteger i = I8# (narrow8Int# (toInt# i))

instance Real Int8 where
 toRational x = toInteger x % 1

instance Enum Int8 where
 succ x
 | x /= maxBound = x + 1
 | otherwise = succError "Int8"
 pred x
 | x /= minBound = x - 1
 | otherwise = predError "Int8"
 toEnum i@(I# i#)
 | i >= fromIntegral (minBound::Int8) && i <= fromIntegral (maxBound::Int8)
 = I8# i#
 | otherwise = toEnumError "Int8" i (minBound::Int8, maxBound::Int8)
 fromEnum (I8# x#) = I# x#
 enumFrom = boundedEnumFrom
 enumFromThen = boundedEnumFromThen

instance Integral Int8 where
 quot x@(I8# x#) y@(I8# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I8# (narrow8Int# (x# `quotInt#` y#))
 rem x@(I8# x#) y@(I8# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I8# (narrow8Int# (x# `remInt#` y#))
 div x@(I8# x#) y@(I8# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I8# (narrow8Int# (x# `divInt#` y#))
 mod x@(I8# x#) y@(I8# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I8# (narrow8Int# (x# `modInt#` y#))
 quotRem x@(I8# x#) y@(I8# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = (I8# (narrow8Int# (x# `quotInt#` y#)),
 I8# (narrow8Int# (x# `remInt#` y#)))
 divMod x@(I8# x#) y@(I8# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = (I8# (narrow8Int# (x# `divInt#` y#)),
 I8# (narrow8Int# (x# `modInt#` y#)))
 toInteger (I8# x#) = smallInteger x#

instance Bounded Int8 where
 minBound = -0x80
 maxBound = 0x7F

instance Ix Int8 where
 range (m,n) = [m..n]
 unsafeIndex (m,_) i = fromIntegral i - fromIntegral m
 inRange (m,n) i = m <= i && i <= n

instance Read Int8 where
 readsPrec p s = [(fromIntegral (x::Int), r) | (x, r) <- readsPrec p s]

instance Bits Int8 where
 {-# INLINE shift #-}

 (I8# x#) .&. (I8# y#) = I8# (word2Int# (int2Word# x# `and#` int2Word# y#))
 (I8# x#) .|. (I8# y#) = I8# (word2Int# (int2Word# x# `or#` int2Word# y#))
 (I8# x#) `xor` (I8# y#) = I8# (word2Int# (int2Word# x# `xor#` int2Word# y#))
 complement (I8# x#) = I8# (word2Int# (int2Word# x# `xor#` int2Word# (-1#)))
 (I8# x#) `shift` (I# i#)
 | i# >=# 0# = I8# (narrow8Int# (x# `iShiftL#` i#))
 | otherwise = I8# (x# `iShiftRA#` negateInt# i#)
 (I8# x#) `rotate` (I# i#)
 | i'# ==# 0# 
 = I8# x#
 | otherwise
 = I8# (narrow8Int# (word2Int# ((x'# `uncheckedShiftL#` i'#) `or#`
 (x'# `uncheckedShiftRL#` (8# -# i'#)))))
 where
 !x'# = narrow8Word# (int2Word# x#)
 !i'# = word2Int# (int2Word# i# `and#` int2Word# 7#)
 bitSize _ = 8
 isSigned _ = True

{-# RULES
"fromIntegral/Int8->Int8" fromIntegral = id :: Int8 -> Int8
"fromIntegral/a->Int8" fromIntegral = \x -> case fromIntegral x of I# x# -> I8# (narrow8Int# x#)
"fromIntegral/Int8->a" fromIntegral = \(I8# x#) -> fromIntegral (I# x#)
 #-}

{-# RULES
"properFraction/Float->(Int8,Float)"
 forall x. properFraction (x :: Float) =
 case properFraction x of {
 (n, y) -> ((fromIntegral :: Int -> Int8) n, y) }
"truncate/Float->Int8"
 forall x. truncate (x :: Float) = (fromIntegral :: Int -> Int8) (truncate x)
"floor/Float->Int8"
 forall x. floor (x :: Float) = (fromIntegral :: Int -> Int8) (floor x)
"ceiling/Float->Int8"
 forall x. ceiling (x :: Float) = (fromIntegral :: Int -> Int8) (ceiling x)
"round/Float->Int8"
 forall x. round (x :: Float) = (fromIntegral :: Int -> Int8) (round x)
 #-}

{-# RULES
"properFraction/Double->(Int8,Double)"
 forall x. properFraction (x :: Double) =
 case properFraction x of {
 (n, y) -> ((fromIntegral :: Int -> Int8) n, y) }
"truncate/Double->Int8"
 forall x. truncate (x :: Double) = (fromIntegral :: Int -> Int8) (truncate x)
"floor/Double->Int8"
 forall x. floor (x :: Double) = (fromIntegral :: Int -> Int8) (floor x)
"ceiling/Double->Int8"
 forall x. ceiling (x :: Double) = (fromIntegral :: Int -> Int8) (ceiling x)
"round/Double->Int8"
 forall x. round (x :: Double) = (fromIntegral :: Int -> Int8) (round x)
 #-}

------------------------------------------------------------------------
-- type Int16
------------------------------------------------------------------------

-- Int16 is represented in the same way as Int. Operations may assume
-- and must ensure that it holds only values from its logical range.

data Int16 = I16# Int# deriving (Eq, Ord)
-- ^ 16-bit signed integer type

instance Show Int16 where
 showsPrec p x = showsPrec p (fromIntegral x :: Int)

instance Num Int16 where
 (I16# x#) + (I16# y#) = I16# (narrow16Int# (x# +# y#))
 (I16# x#) - (I16# y#) = I16# (narrow16Int# (x# -# y#))
 (I16# x#) * (I16# y#) = I16# (narrow16Int# (x# *# y#))
 negate (I16# x#) = I16# (narrow16Int# (negateInt# x#))
 abs x | x >= 0 = x
 | otherwise = negate x
 signum x | x > 0 = 1
 signum 0 = 0
 signum _ = -1
 fromInteger i = I16# (narrow16Int# (toInt# i))

instance Real Int16 where
 toRational x = toInteger x % 1

instance Enum Int16 where
 succ x
 | x /= maxBound = x + 1
 | otherwise = succError "Int16"
 pred x
 | x /= minBound = x - 1
 | otherwise = predError "Int16"
 toEnum i@(I# i#)
 | i >= fromIntegral (minBound::Int16) && i <= fromIntegral (maxBound::Int16)
 = I16# i#
 | otherwise = toEnumError "Int16" i (minBound::Int16, maxBound::Int16)
 fromEnum (I16# x#) = I# x#
 enumFrom = boundedEnumFrom
 enumFromThen = boundedEnumFromThen

instance Integral Int16 where
 quot x@(I16# x#) y@(I16# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I16# (narrow16Int# (x# `quotInt#` y#))
 rem x@(I16# x#) y@(I16# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I16# (narrow16Int# (x# `remInt#` y#))
 div x@(I16# x#) y@(I16# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I16# (narrow16Int# (x# `divInt#` y#))
 mod x@(I16# x#) y@(I16# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I16# (narrow16Int# (x# `modInt#` y#))
 quotRem x@(I16# x#) y@(I16# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = (I16# (narrow16Int# (x# `quotInt#` y#)),
 I16# (narrow16Int# (x# `remInt#` y#)))
 divMod x@(I16# x#) y@(I16# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = (I16# (narrow16Int# (x# `divInt#` y#)),
 I16# (narrow16Int# (x# `modInt#` y#)))
 toInteger (I16# x#) = smallInteger x#

instance Bounded Int16 where
 minBound = -0x8000
 maxBound = 0x7FFF

instance Ix Int16 where
 range (m,n) = [m..n]
 unsafeIndex (m,_) i = fromIntegral i - fromIntegral m
 inRange (m,n) i = m <= i && i <= n

instance Read Int16 where
 readsPrec p s = [(fromIntegral (x::Int), r) | (x, r) <- readsPrec p s]

instance Bits Int16 where
 {-# INLINE shift #-}

 (I16# x#) .&. (I16# y#) = I16# (word2Int# (int2Word# x# `and#` int2Word# y#))
 (I16# x#) .|. (I16# y#) = I16# (word2Int# (int2Word# x# `or#` int2Word# y#))
 (I16# x#) `xor` (I16# y#) = I16# (word2Int# (int2Word# x# `xor#` int2Word# y#))
 complement (I16# x#) = I16# (word2Int# (int2Word# x# `xor#` int2Word# (-1#)))
 (I16# x#) `shift` (I# i#)
 | i# >=# 0# = I16# (narrow16Int# (x# `iShiftL#` i#))
 | otherwise = I16# (x# `iShiftRA#` negateInt# i#)
 (I16# x#) `rotate` (I# i#)
 | i'# ==# 0# 
 = I16# x#
 | otherwise
 = I16# (narrow16Int# (word2Int# ((x'# `uncheckedShiftL#` i'#) `or#`
 (x'# `uncheckedShiftRL#` (16# -# i'#)))))
 where
 !x'# = narrow16Word# (int2Word# x#)
 !i'# = word2Int# (int2Word# i# `and#` int2Word# 15#)
 bitSize _ = 16
 isSigned _ = True


{-# RULES
"fromIntegral/Word8->Int16" fromIntegral = \(W8# x#) -> I16# (word2Int# x#)
"fromIntegral/Int8->Int16" fromIntegral = \(I8# x#) -> I16# x#
"fromIntegral/Int16->Int16" fromIntegral = id :: Int16 -> Int16
"fromIntegral/a->Int16" fromIntegral = \x -> case fromIntegral x of I# x# -> I16# (narrow16Int# x#)
"fromIntegral/Int16->a" fromIntegral = \(I16# x#) -> fromIntegral (I# x#)
 #-}

{-# RULES
"properFraction/Float->(Int16,Float)"
 forall x. properFraction (x :: Float) =
 case properFraction x of {
 (n, y) -> ((fromIntegral :: Int -> Int16) n, y) }
"truncate/Float->Int16"
 forall x. truncate (x :: Float) = (fromIntegral :: Int -> Int16) (truncate x)
"floor/Float->Int16"
 forall x. floor (x :: Float) = (fromIntegral :: Int -> Int16) (floor x)
"ceiling/Float->Int16"
 forall x. ceiling (x :: Float) = (fromIntegral :: Int -> Int16) (ceiling x)
"round/Float->Int16"
 forall x. round (x :: Float) = (fromIntegral :: Int -> Int16) (round x)
 #-}

{-# RULES
"properFraction/Double->(Int16,Double)"
 forall x. properFraction (x :: Double) =
 case properFraction x of {
 (n, y) -> ((fromIntegral :: Int -> Int16) n, y) }
"truncate/Double->Int16"
 forall x. truncate (x :: Double) = (fromIntegral :: Int -> Int16) (truncate x)
"floor/Double->Int16"
 forall x. floor (x :: Double) = (fromIntegral :: Int -> Int16) (floor x)
"ceiling/Double->Int16"
 forall x. ceiling (x :: Double) = (fromIntegral :: Int -> Int16) (ceiling x)
"round/Double->Int16"
 forall x. round (x :: Double) = (fromIntegral :: Int -> Int16) (round x)
 #-}

------------------------------------------------------------------------
-- type Int32
------------------------------------------------------------------------

#if WORD_SIZE_IN_BITS < 32

data Int32 = I32# Int32#
-- ^ 32-bit signed integer type

instance Eq Int32 where
 (I32# x#) == (I32# y#) = x# `eqInt32#` y#
 (I32# x#) /= (I32# y#) = x# `neInt32#` y#

instance Ord Int32 where
 (I32# x#) < (I32# y#) = x# `ltInt32#` y#
 (I32# x#) <= (I32# y#) = x# `leInt32#` y#
 (I32# x#) > (I32# y#) = x# `gtInt32#` y#
 (I32# x#) >= (I32# y#) = x# `geInt32#` y#

instance Show Int32 where
 showsPrec p x = showsPrec p (toInteger x)

instance Num Int32 where
 (I32# x#) + (I32# y#) = I32# (x# `plusInt32#` y#)
 (I32# x#) - (I32# y#) = I32# (x# `minusInt32#` y#)
 (I32# x#) * (I32# y#) = I32# (x# `timesInt32#` y#)
 negate (I32# x#) = I32# (negateInt32# x#)
 abs x | x >= 0 = x
 | otherwise = negate x
 signum x | x > 0 = 1
 signum 0 = 0
 signum _ = -1
 fromInteger (S# i#) = I32# (intToInt32# i#)
 fromInteger (J# s# d#) = I32# (integerToInt32# s# d#)

instance Enum Int32 where
 succ x
 | x /= maxBound = x + 1
 | otherwise = succError "Int32"
 pred x
 | x /= minBound = x - 1
 | otherwise = predError "Int32"
 toEnum (I# i#) = I32# (intToInt32# i#)
 fromEnum x@(I32# x#)
 | x >= fromIntegral (minBound::Int) && x <= fromIntegral (maxBound::Int)
 = I# (int32ToInt# x#)
 | otherwise = fromEnumError "Int32" x
 enumFrom = integralEnumFrom
 enumFromThen = integralEnumFromThen
 enumFromTo = integralEnumFromTo
 enumFromThenTo = integralEnumFromThenTo

instance Integral Int32 where
 quot x@(I32# x#) y@(I32# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I32# (x# `quotInt32#` y#)
 rem x@(I32# x#) y@(I32# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I32# (x# `remInt32#` y#)
 div x@(I32# x#) y@(I32# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I32# (x# `divInt32#` y#)
 mod x@(I32# x#) y@(I32# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I32# (x# `modInt32#` y#)
 quotRem x@(I32# x#) y@(I32# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = (I32# (x# `quotInt32#` y#),
 I32# (x# `remInt32#` y#))
 divMod x@(I32# x#) y@(I32# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = (I32# (x# `divInt32#` y#),
 I32# (x# `modInt32#` y#))
 toInteger x@(I32# x#)
	| x >= fromIntegral (minBound::Int) && x <= fromIntegral (maxBound::Int)
 = smallInteger (int32ToInt# x#)
 | otherwise = case int32ToInteger# x# of (# s, d #) -> J# s d

divInt32#, modInt32# :: Int32# -> Int32# -> Int32#
x# `divInt32#` y#
 | (x# `gtInt32#` intToInt32# 0#) && (y# `ltInt32#` intToInt32# 0#)
 = ((x# `minusInt32#` y#) `minusInt32#` intToInt32# 1#) `quotInt32#` y#
 | (x# `ltInt32#` intToInt32# 0#) && (y# `gtInt32#` intToInt32# 0#)
 = ((x# `minusInt32#` y#) `plusInt32#` intToInt32# 1#) `quotInt32#` y#
 | otherwise = x# `quotInt32#` y#
x# `modInt32#` y#
 | (x# `gtInt32#` intToInt32# 0#) && (y# `ltInt32#` intToInt32# 0#) ||
 (x# `ltInt32#` intToInt32# 0#) && (y# `gtInt32#` intToInt32# 0#)
 = if r# `neInt32#` intToInt32# 0# then r# `plusInt32#` y# else intToInt32# 0#
 | otherwise = r#
 where
 r# = x# `remInt32#` y#

instance Read Int32 where
 readsPrec p s = [(fromInteger x, r) | (x, r) <- readsPrec p s]

instance Bits Int32 where
 {-# INLINE shift #-}

 (I32# x#) .&. (I32# y#) = I32# (word32ToInt32# (int32ToWord32# x# `and32#` int32ToWord32# y#))
 (I32# x#) .|. (I32# y#) = I32# (word32ToInt32# (int32ToWord32# x# `or32#` int32ToWord32# y#))
 (I32# x#) `xor` (I32# y#) = I32# (word32ToInt32# (int32ToWord32# x# `xor32#` int32ToWord32# y#))
 complement (I32# x#) = I32# (word32ToInt32# (not32# (int32ToWord32# x#)))
 (I32# x#) `shift` (I# i#)
 | i# >=# 0# = I32# (x# `iShiftL32#` i#)
 | otherwise = I32# (x# `iShiftRA32#` negateInt# i#)
 (I32# x#) `rotate` (I# i#)
 | i'# ==# 0# 
 = I32# x#
 | otherwise
 = I32# (word32ToInt32# ((x'# `shiftL32#` i'#) `or32#`
 (x'# `shiftRL32#` (32# -# i'#))))
 where
 x'# = int32ToWord32# x#
 i'# = word2Int# (int2Word# i# `and#` int2Word# 31#)
 bitSize _ = 32
 isSigned _ = True


{-# RULES
"fromIntegral/Int->Int32" fromIntegral = \(I# x#) -> I32# (intToInt32# x#)
"fromIntegral/Word->Int32" fromIntegral = \(W# x#) -> I32# (word32ToInt32# (wordToWord32# x#))
"fromIntegral/Word32->Int32" fromIntegral = \(W32# x#) -> I32# (word32ToInt32# x#)
"fromIntegral/Int32->Int" fromIntegral = \(I32# x#) -> I# (int32ToInt# x#)
"fromIntegral/Int32->Word" fromIntegral = \(I32# x#) -> W# (int2Word# (int32ToInt# x#))
"fromIntegral/Int32->Word32" fromIntegral = \(I32# x#) -> W32# (int32ToWord32# x#)
"fromIntegral/Int32->Int32" fromIntegral = id :: Int32 -> Int32
 #-}

-- No rules for RealFrac methods if Int32 is larger than Int
#else

-- Int32 is represented in the same way as Int.
#if WORD_SIZE_IN_BITS > 32
-- Operations may assume and must ensure that it holds only values
-- from its logical range.
#endif

data Int32 = I32# Int# deriving (Eq, Ord)
-- ^ 32-bit signed integer type

instance Show Int32 where
 showsPrec p x = showsPrec p (fromIntegral x :: Int)

instance Num Int32 where
 (I32# x#) + (I32# y#) = I32# (narrow32Int# (x# +# y#))
 (I32# x#) - (I32# y#) = I32# (narrow32Int# (x# -# y#))
 (I32# x#) * (I32# y#) = I32# (narrow32Int# (x# *# y#))
 negate (I32# x#) = I32# (narrow32Int# (negateInt# x#))
 abs x | x >= 0 = x
 | otherwise = negate x
 signum x | x > 0 = 1
 signum 0 = 0
 signum _ = -1
 fromInteger i = I32# (narrow32Int# (toInt# i))

instance Enum Int32 where
 succ x
 | x /= maxBound = x + 1
 | otherwise = succError "Int32"
 pred x
 | x /= minBound = x - 1
 | otherwise = predError "Int32"
#if WORD_SIZE_IN_BITS == 32
 toEnum (I# i#) = I32# i#
#else
 toEnum i@(I# i#)
 | i >= fromIntegral (minBound::Int32) && i <= fromIntegral (maxBound::Int32)
 = I32# i#
 | otherwise = toEnumError "Int32" i (minBound::Int32, maxBound::Int32)
#endif
 fromEnum (I32# x#) = I# x#
 enumFrom = boundedEnumFrom
 enumFromThen = boundedEnumFromThen

instance Integral Int32 where
 quot x@(I32# x#) y@(I32# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I32# (narrow32Int# (x# `quotInt#` y#))
 rem x@(I32# x#) y@(I32# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I32# (narrow32Int# (x# `remInt#` y#))
 div x@(I32# x#) y@(I32# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I32# (narrow32Int# (x# `divInt#` y#))
 mod x@(I32# x#) y@(I32# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I32# (narrow32Int# (x# `modInt#` y#))
 quotRem x@(I32# x#) y@(I32# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = (I32# (narrow32Int# (x# `quotInt#` y#)),
 I32# (narrow32Int# (x# `remInt#` y#)))
 divMod x@(I32# x#) y@(I32# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = (I32# (narrow32Int# (x# `divInt#` y#)),
 I32# (narrow32Int# (x# `modInt#` y#)))
 toInteger (I32# x#) = smallInteger x#

instance Read Int32 where
 readsPrec p s = [(fromIntegral (x::Int), r) | (x, r) <- readsPrec p s]

instance Bits Int32 where
 {-# INLINE shift #-}

 (I32# x#) .&. (I32# y#) = I32# (word2Int# (int2Word# x# `and#` int2Word# y#))
 (I32# x#) .|. (I32# y#) = I32# (word2Int# (int2Word# x# `or#` int2Word# y#))
 (I32# x#) `xor` (I32# y#) = I32# (word2Int# (int2Word# x# `xor#` int2Word# y#))
 complement (I32# x#) = I32# (word2Int# (int2Word# x# `xor#` int2Word# (-1#)))
 (I32# x#) `shift` (I# i#)
 | i# >=# 0# = I32# (narrow32Int# (x# `iShiftL#` i#))
 | otherwise = I32# (x# `iShiftRA#` negateInt# i#)
 (I32# x#) `rotate` (I# i#)
 | i'# ==# 0# 
 = I32# x#
 | otherwise
 = I32# (narrow32Int# (word2Int# ((x'# `uncheckedShiftL#` i'#) `or#`
 (x'# `uncheckedShiftRL#` (32# -# i'#)))))
 where
 !x'# = narrow32Word# (int2Word# x#)
 !i'# = word2Int# (int2Word# i# `and#` int2Word# 31#)
 bitSize _ = 32
 isSigned _ = True

{-# RULES
"fromIntegral/Word8->Int32" fromIntegral = \(W8# x#) -> I32# (word2Int# x#)
"fromIntegral/Word16->Int32" fromIntegral = \(W16# x#) -> I32# (word2Int# x#)
"fromIntegral/Int8->Int32" fromIntegral = \(I8# x#) -> I32# x#
"fromIntegral/Int16->Int32" fromIntegral = \(I16# x#) -> I32# x#
"fromIntegral/Int32->Int32" fromIntegral = id :: Int32 -> Int32
"fromIntegral/a->Int32" fromIntegral = \x -> case fromIntegral x of I# x# -> I32# (narrow32Int# x#)
"fromIntegral/Int32->a" fromIntegral = \(I32# x#) -> fromIntegral (I# x#)
 #-}

{-# RULES
"properFraction/Float->(Int32,Float)"
 forall x. properFraction (x :: Float) =
 case properFraction x of {
 (n, y) -> ((fromIntegral :: Int -> Int32) n, y) }
"truncate/Float->Int32"
 forall x. truncate (x :: Float) = (fromIntegral :: Int -> Int32) (truncate x)
"floor/Float->Int32"
 forall x. floor (x :: Float) = (fromIntegral :: Int -> Int32) (floor x)
"ceiling/Float->Int32"
 forall x. ceiling (x :: Float) = (fromIntegral :: Int -> Int32) (ceiling x)
"round/Float->Int32"
 forall x. round (x :: Float) = (fromIntegral :: Int -> Int32) (round x)
 #-}

{-# RULES
"properFraction/Double->(Int32,Double)"
 forall x. properFraction (x :: Double) =
 case properFraction x of {
 (n, y) -> ((fromIntegral :: Int -> Int32) n, y) }
"truncate/Double->Int32"
 forall x. truncate (x :: Double) = (fromIntegral :: Int -> Int32) (truncate x)
"floor/Double->Int32"
 forall x. floor (x :: Double) = (fromIntegral :: Int -> Int32) (floor x)
"ceiling/Double->Int32"
 forall x. ceiling (x :: Double) = (fromIntegral :: Int -> Int32) (ceiling x)
"round/Double->Int32"
 forall x. round (x :: Double) = (fromIntegral :: Int -> Int32) (round x)
 #-}

#endif

instance Real Int32 where
 toRational x = toInteger x % 1

instance Bounded Int32 where
 minBound = -0x80000000
 maxBound = 0x7FFFFFFF

instance Ix Int32 where
 range (m,n) = [m..n]
 unsafeIndex (m,_) i = fromIntegral i - fromIntegral m
 inRange (m,n) i = m <= i && i <= n

------------------------------------------------------------------------
-- type Int64
------------------------------------------------------------------------

#if WORD_SIZE_IN_BITS < 64

data Int64 = I64# Int64#
-- ^ 64-bit signed integer type

instance Eq Int64 where
 (I64# x#) == (I64# y#) = x# `eqInt64#` y#
 (I64# x#) /= (I64# y#) = x# `neInt64#` y#

instance Ord Int64 where
 (I64# x#) < (I64# y#) = x# `ltInt64#` y#
 (I64# x#) <= (I64# y#) = x# `leInt64#` y#
 (I64# x#) > (I64# y#) = x# `gtInt64#` y#
 (I64# x#) >= (I64# y#) = x# `geInt64#` y#

instance Show Int64 where
 showsPrec p x = showsPrec p (toInteger x)

instance Num Int64 where
 (I64# x#) + (I64# y#) = I64# (x# `plusInt64#` y#)
 (I64# x#) - (I64# y#) = I64# (x# `minusInt64#` y#)
 (I64# x#) * (I64# y#) = I64# (x# `timesInt64#` y#)
 negate (I64# x#) = I64# (negateInt64# x#)
 abs x | x >= 0 = x
 | otherwise = negate x
 signum x | x > 0 = 1
 signum 0 = 0
 signum _ = -1
 fromInteger i = I64# (integerToInt64 i)

instance Enum Int64 where
 succ x
 | x /= maxBound = x + 1
 | otherwise = succError "Int64"
 pred x
 | x /= minBound = x - 1
 | otherwise = predError "Int64"
 toEnum (I# i#) = I64# (intToInt64# i#)
 fromEnum x@(I64# x#)
 | x >= fromIntegral (minBound::Int) && x <= fromIntegral (maxBound::Int)
 = I# (int64ToInt# x#)
 | otherwise = fromEnumError "Int64" x
 enumFrom = integralEnumFrom
 enumFromThen = integralEnumFromThen
 enumFromTo = integralEnumFromTo
 enumFromThenTo = integralEnumFromThenTo

instance Integral Int64 where
 quot x@(I64# x#) y@(I64# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I64# (x# `quotInt64#` y#)
 rem x@(I64# x#) y@(I64# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I64# (x# `remInt64#` y#)
 div x@(I64# x#) y@(I64# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I64# (x# `divInt64#` y#)
 mod x@(I64# x#) y@(I64# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I64# (x# `modInt64#` y#)
 quotRem x@(I64# x#) y@(I64# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = (I64# (x# `quotInt64#` y#),
 I64# (x# `remInt64#` y#))
 divMod x@(I64# x#) y@(I64# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = (I64# (x# `divInt64#` y#),
 I64# (x# `modInt64#` y#))
 toInteger (I64# x) = int64ToInteger x


divInt64#, modInt64# :: Int64# -> Int64# -> Int64#
x# `divInt64#` y#
 | (x# `gtInt64#` intToInt64# 0#) && (y# `ltInt64#` intToInt64# 0#)
 = ((x# `minusInt64#` y#) `minusInt64#` intToInt64# 1#) `quotInt64#` y#
 | (x# `ltInt64#` intToInt64# 0#) && (y# `gtInt64#` intToInt64# 0#)
 = ((x# `minusInt64#` y#) `plusInt64#` intToInt64# 1#) `quotInt64#` y#
 | otherwise = x# `quotInt64#` y#
x# `modInt64#` y#
 | (x# `gtInt64#` intToInt64# 0#) && (y# `ltInt64#` intToInt64# 0#) ||
 (x# `ltInt64#` intToInt64# 0#) && (y# `gtInt64#` intToInt64# 0#)
 = if r# `neInt64#` intToInt64# 0# then r# `plusInt64#` y# else intToInt64# 0#
 | otherwise = r#
 where
 !r# = x# `remInt64#` y#

instance Read Int64 where
 readsPrec p s = [(fromInteger x, r) | (x, r) <- readsPrec p s]

instance Bits Int64 where
 {-# INLINE shift #-}

 (I64# x#) .&. (I64# y#) = I64# (word64ToInt64# (int64ToWord64# x# `and64#` int64ToWord64# y#))
 (I64# x#) .|. (I64# y#) = I64# (word64ToInt64# (int64ToWord64# x# `or64#` int64ToWord64# y#))
 (I64# x#) `xor` (I64# y#) = I64# (word64ToInt64# (int64ToWord64# x# `xor64#` int64ToWord64# y#))
 complement (I64# x#) = I64# (word64ToInt64# (not64# (int64ToWord64# x#)))
 (I64# x#) `shift` (I# i#)
 | i# >=# 0# = I64# (x# `iShiftL64#` i#)
 | otherwise = I64# (x# `iShiftRA64#` negateInt# i#)
 (I64# x#) `rotate` (I# i#)
 | i'# ==# 0# 
 = I64# x#
 | otherwise
 = I64# (word64ToInt64# ((x'# `uncheckedShiftL64#` i'#) `or64#`
 (x'# `uncheckedShiftRL64#` (64# -# i'#))))
 where
 !x'# = int64ToWord64# x#
 !i'# = word2Int# (int2Word# i# `and#` int2Word# 63#)
 bitSize _ = 64
 isSigned _ = True

-- give the 64-bit shift operations the same treatment as the 32-bit
-- ones (see GHC.Base), namely we wrap them in tests to catch the
-- cases when we're shifting more than 64 bits to avoid unspecified
-- behaviour in the C shift operations.

iShiftL64#, iShiftRA64# :: Int64# -> Int# -> Int64#

a `iShiftL64#` b | b >=# 64# = intToInt64# 0#
		 | otherwise = a `uncheckedIShiftL64#` b

a `iShiftRA64#` b | b >=# 64# = if a `ltInt64#` (intToInt64# 0#) 
					then intToInt64# (-1#) 
					else intToInt64# 0#
		 | otherwise = a `uncheckedIShiftRA64#` b

{-# RULES
"fromIntegral/Int->Int64" fromIntegral = \(I# x#) -> I64# (intToInt64# x#)
"fromIntegral/Word->Int64" fromIntegral = \(W# x#) -> I64# (word64ToInt64# (wordToWord64# x#))
"fromIntegral/Word64->Int64" fromIntegral = \(W64# x#) -> I64# (word64ToInt64# x#)
"fromIntegral/Int64->Int" fromIntegral = \(I64# x#) -> I# (int64ToInt# x#)
"fromIntegral/Int64->Word" fromIntegral = \(I64# x#) -> W# (int2Word# (int64ToInt# x#))
"fromIntegral/Int64->Word64" fromIntegral = \(I64# x#) -> W64# (int64ToWord64# x#)
"fromIntegral/Int64->Int64" fromIntegral = id :: Int64 -> Int64
 #-}

-- No RULES for RealFrac methods if Int is smaller than Int64, we can't
-- go through Int and whether going through Integer is faster is uncertain.
#else

-- Int64 is represented in the same way as Int.
-- Operations may assume and must ensure that it holds only values
-- from its logical range.

data Int64 = I64# Int# deriving (Eq, Ord)
-- ^ 64-bit signed integer type

instance Show Int64 where
 showsPrec p x = showsPrec p (fromIntegral x :: Int)

instance Num Int64 where
 (I64# x#) + (I64# y#) = I64# (x# +# y#)
 (I64# x#) - (I64# y#) = I64# (x# -# y#)
 (I64# x#) * (I64# y#) = I64# (x# *# y#)
 negate (I64# x#) = I64# (negateInt# x#)
 abs x | x >= 0 = x
 | otherwise = negate x
 signum x | x > 0 = 1
 signum 0 = 0
 signum _ = -1
 fromInteger i = I64# (toInt# i)

instance Enum Int64 where
 succ x
 | x /= maxBound = x + 1
 | otherwise = succError "Int64"
 pred x
 | x /= minBound = x - 1
 | otherwise = predError "Int64"
 toEnum (I# i#) = I64# i#
 fromEnum (I64# x#) = I# x#
 enumFrom = boundedEnumFrom
 enumFromThen = boundedEnumFromThen

instance Integral Int64 where
 quot x@(I64# x#) y@(I64# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I64# (x# `quotInt#` y#)
 rem x@(I64# x#) y@(I64# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I64# (x# `remInt#` y#)
 div x@(I64# x#) y@(I64# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I64# (x# `divInt#` y#)
 mod x@(I64# x#) y@(I64# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I64# (x# `modInt#` y#)
 quotRem x@(I64# x#) y@(I64# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = (I64# (x# `quotInt#` y#), I64# (x# `remInt#` y#))
 divMod x@(I64# x#) y@(I64# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = (I64# (x# `divInt#` y#), I64# (x# `modInt#` y#))
 toInteger (I64# x#) = smallInteger x#

instance Read Int64 where
 readsPrec p s = [(fromIntegral (x::Int), r) | (x, r) <- readsPrec p s]

instance Bits Int64 where
 {-# INLINE shift #-}

 (I64# x#) .&. (I64# y#) = I64# (word2Int# (int2Word# x# `and#` int2Word# y#))
 (I64# x#) .|. (I64# y#) = I64# (word2Int# (int2Word# x# `or#` int2Word# y#))
 (I64# x#) `xor` (I64# y#) = I64# (word2Int# (int2Word# x# `xor#` int2Word# y#))
 complement (I64# x#) = I64# (word2Int# (int2Word# x# `xor#` int2Word# (-1#)))
 (I64# x#) `shift` (I# i#)
 | i# >=# 0# = I64# (x# `iShiftL#` i#)
 | otherwise = I64# (x# `iShiftRA#` negateInt# i#)
 (I64# x#) `rotate` (I# i#)
 | i'# ==# 0# 
 = I64# x#
 | otherwise
 = I64# (word2Int# ((x'# `uncheckedShiftL#` i'#) `or#`
 (x'# `uncheckedShiftRL#` (64# -# i'#))))
 where
 !x'# = int2Word# x#
 !i'# = word2Int# (int2Word# i# `and#` int2Word# 63#)
 bitSize _ = 64
 isSigned _ = True

{-# RULES
"fromIntegral/a->Int64" fromIntegral = \x -> case fromIntegral x of I# x# -> I64# x#
"fromIntegral/Int64->a" fromIntegral = \(I64# x#) -> fromIntegral (I# x#)
 #-}

{-# RULES
"properFraction/Float->(Int64,Float)"
 forall x. properFraction (x :: Float) =
 case properFraction x of {
 (n, y) -> ((fromIntegral :: Int -> Int64) n, y) }
"truncate/Float->Int64"
 forall x. truncate (x :: Float) = (fromIntegral :: Int -> Int64) (truncate x)
"floor/Float->Int64"
 forall x. floor (x :: Float) = (fromIntegral :: Int -> Int64) (floor x)
"ceiling/Float->Int64"
 forall x. ceiling (x :: Float) = (fromIntegral :: Int -> Int64) (ceiling x)
"round/Float->Int64"
 forall x. round (x :: Float) = (fromIntegral :: Int -> Int64) (round x)
 #-}

{-# RULES
"properFraction/Double->(Int64,Double)"
 forall x. properFraction (x :: Double) =
 case properFraction x of {
 (n, y) -> ((fromIntegral :: Int -> Int64) n, y) }
"truncate/Double->Int64"
 forall x. truncate (x :: Double) = (fromIntegral :: Int -> Int64) (truncate x)
"floor/Double->Int64"
 forall x. floor (x :: Double) = (fromIntegral :: Int -> Int64) (floor x)
"ceiling/Double->Int64"
 forall x. ceiling (x :: Double) = (fromIntegral :: Int -> Int64) (ceiling x)
"round/Double->Int64"
 forall x. round (x :: Double) = (fromIntegral :: Int -> Int64) (round x)
 #-}

uncheckedIShiftL64# :: Int# -> Int# -> Int#
uncheckedIShiftL64# = uncheckedIShiftL#

uncheckedIShiftRA64# :: Int# -> Int# -> Int#
uncheckedIShiftRA64# = uncheckedIShiftRA#
#endif

instance Real Int64 where
 toRational x = toInteger x % 1

instance Bounded Int64 where
 minBound = -0x8000000000000000
 maxBound = 0x7FFFFFFFFFFFFFFF

instance Ix Int64 where
 range (m,n) = [m..n]
 unsafeIndex (m,_) i = fromIntegral i - fromIntegral m
 inRange (m,n) i = m <= i && i <= n

AltStyle によって変換されたページ (->オリジナル) /