|  | 
| 5 | 5 | ## Table of Contents / 目录: | 
| 6 | 6 | - [PyTorch tutorials, examples and books](#pytorch-tutorials-examples-and-books) | 
| 7 | 7 |  - [Table of Contents / 目录:](#table-of-contents--目录) | 
| 8 |  | - - [1. PyTorch 版本变化及迁移指南](#1-pytorch-版本变化及迁移指南) | 
| 9 |  | - - [2. PyTorch for Numpy users 给Numpy用户的PyTorch指南](#2-pytorch-for-numpy-users-给numpy用户的pytorch指南) | 
| 10 |  | - - [3. PyTorch 1.0 tutorials and examples](#3-pytorch-10-tutorials-and-examples) | 
| 11 |  | - - [4. Books and slides about PyTorch 书籍、PPT等](#4-books-and-slides-about-pytorch-书籍ppt等) | 
| 12 |  | - - [5. 以下是一些独立的教程](#5-以下是一些独立的教程) | 
|  | 8 | + - [PyTorch 1.0 tutorials and examples](#pytorch-10-tutorials-and-examples) | 
|  | 9 | + - [Books and slides about PyTorch 书籍、PPT等](#books-and-slides-about-pytorch-书籍ppt等) | 
|  | 10 | + - [以下是一些独立的教程](#以下是一些独立的教程) | 
| 13 | 11 |  - [1) PyTorch深度学习:60分钟入门与实战](#1-pytorch深度学习60分钟入门与实战) | 
| 14 | 12 |  - [2) Learning PyTorch with Examples 用例子学习PyTorch](#2-learning-pytorch-with-examples-用例子学习pytorch) | 
| 15 | 13 |  - [3) PyTorch1.0-Zero-To-All](#3-pytorch10-zero-to-all) | 
| 16 | 14 |  - [4) Grokking PyTorch](#4-grokking-pytorch) | 
| 17 |  | - - [6. How to run? 推荐的运行方式](#6-how-to-run-推荐的运行方式) | 
|  | 15 | + - [How to run? 推荐的运行方式](#how-to-run-推荐的运行方式) | 
|  | 16 | + | 
|  | 17 | +## PyTorch 1.0 tutorials and examples | 
|  | 18 | + | 
|  | 19 | +* [0.PyTorch 版本变化及迁移指南](PyTorch版本变化及迁移指南/README.md) | 
|  | 20 | +* [1.PyTorch for Numpy users 给Numpy用户的PyTorch指南](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/PyTorch%20for%20Numpy%20users%20给Numpy用户的PyTorch指南) | 
|  | 21 | +* [2.PyTorch-basics PyTorch基础](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/PyTorch-basics%20PyTorch基础) | 
|  | 22 | +* [3.Linear-regression 线性回归](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/Linear-regression%20线性回归) | 
|  | 23 | +* [4.Logistic-regression Logistic 回归](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/Logistic-regression%20Logistic%20回归) | 
|  | 24 | +* [5.optimizer 优化器](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/optimizer%20优化) | 
|  | 25 | +* [6.neural-network 神经网络](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/neural-network%20神经网络) | 
|  | 26 | +* [7.convolutional-neural-network(CNN) 卷积神经网络](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/convolutional-neural-network(CNN)%20卷积神经网络) | 
|  | 27 | +* [8.famous-CNN 经典的CNN网络](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/famous-CNN%20经典的CNN网络) | 
|  | 28 | +* [9.Using Pretrained models 使用预训练的模型](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/Using%20Pretrained%20models%20使用预训练的模型) | 
|  | 29 | +* [10.Dataset-and-Dataloader 自定义数据读取](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/Dataset-and-Dataloader) | 
|  | 30 | +* [11.custom-dataset-example 定义自己的数据集](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/custom-dataset-example%20定义自己的数据集) | 
|  | 31 | +* [12.visdom-visualization visdom可视化](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/visdom-visualization%20visdom可视化) | 
|  | 32 | +* [13.tensorboard-visualization tensorboard可视化](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/tensorboard-visualization%20tensorboard可视化) | 
|  | 33 | +* [14.semantic-segmentation 语义分割](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/semantic-segmentation%20语义分割) | 
|  | 34 | +* [15.Neural-Style (StyleTransfer) 风格迁移](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/Neural-Style%20(StyleTransfer)%20风格迁移) | 
|  | 35 | +* [17.Transfer-Learning 迁移学习](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/Transfer-Learning%20迁移学习) | 
| 18 | 36 | 
 | 
| 19 |  | - | 
| 20 |  | -## 1. PyTorch 版本变化及迁移指南 | 
| 21 |  | - | 
| 22 |  | -* [PyTorch 1.0 **稳定版**](https://pytorch.org/get-started/locally/) 已经发布,还有什么理由不更新呢~ | 
| 23 |  | - | 
| 24 |  | -* 版本变化及迁移指南见 [**这里**](PyTorch版本变化及迁移指南/README.md)。 | 
| 25 |  | - | 
| 26 |  | -## 2. PyTorch for Numpy users 给Numpy用户的PyTorch指南 | 
| 27 |  | -* 表格过长,请点击 [这里](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/PyTorch%20for%20Numpy%20users%20给Numpy用户的PyTorch指南)。 | 
| 28 |  | - | 
| 29 |  | - | 
| 30 |  | -## 3. PyTorch 1.0 tutorials and examples | 
| 31 |  | - | 
| 32 |  | -* [PyTorch-basics PyTorch基础](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/PyTorch-basics%20PyTorch基础) | 
| 33 |  | -* [Linear-regression 线性回归](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/Linear-regression%20线性回归) | 
| 34 |  | -* [Logistic-regression Logistic 回归](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/Logistic-regression%20Logistic%20回归) | 
| 35 |  | -* [optimizer 优化器](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/optimizer%20优化) | 
| 36 |  | -* [neural-network 神经网络](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/neural-network%20神经网络) | 
| 37 |  | -* [convolutional-neural-network(CNN) 卷积神经网络](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/convolutional-neural-network(CNN)%20卷积神经网络) | 
| 38 |  | -* [famous-CNN 经典的CNN网络](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/famous-CNN%20经典的CNN网络) | 
| 39 |  | -* [Using Pretrained models 使用预训练的模型](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/Using%20Pretrained%20models%20使用预训练的模型) | 
| 40 |  | -* [Dataset-and-Dataloader 自定义数据读取](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/Dataset-and-Dataloader) | 
| 41 |  | -* [custom-dataset-example 定义自己的数据集](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/custom-dataset-example%20定义自己的数据集) | 
| 42 |  | -* [visdom-visualization visdom可视化](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/visdom-visualization%20visdom可视化) | 
| 43 |  | -* [tensorboard-visualization tensorboard可视化](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/tensorboard-visualization%20tensorboard可视化) | 
| 44 |  | -* [semantic-segmentation 语义分割](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/semantic-segmentation%20语义分割) | 
| 45 |  | -* [Neural-Style (StyleTransfer) 风格迁移](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/Neural-Style%20(StyleTransfer)%20风格迁移) | 
| 46 |  | -* [Transfer-Learning 迁移学习](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/Transfer-Learning%20迁移学习) | 
| 47 | 37 | * [计算机视觉与PyTorch](https://github.com/bat67/vision-with-pytorch) | 
| 48 | 38 | 
 | 
| 49 | 39 |  * PyTorch与计算机视觉简要总结 | 
|  | 
| 58 | 48 |  * [PyTorch vs TensorFlow: A reddit post about PyTorch and TensorFlow](https://www.reddit.com/r/MachineLearning/comments/5w3q74/d_so_pytorch_vs_tensorflow_whats_the_verdict_on/) | 
| 59 | 49 | 
 | 
| 60 | 50 | 
 | 
| 61 |  | -## 4. [Books and slides about PyTorch 书籍、PPT等](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/books-and-slides) | 
|  | 51 | +## [Books and slides about PyTorch 书籍、PPT等](https://github.com/bat67/pytorch-tutorials-examples-and-books/tree/master/books-and-slides) | 
| 62 | 52 | 
 | 
| 63 | 53 | > Note: some of these are old version; 下面的书籍部分还不是1.0版本。。毕竟1.0刚出所以书籍较少。。 | 
| 64 | 54 |  | 
|  | 
| 152 | 142 |  * 11-3-word-embeddings-and-translation.pdf | 
| 153 | 143 | 
 | 
| 154 | 144 | 
 | 
| 155 |  | -## 5. 以下是一些独立的教程 | 
|  | 145 | +## 以下是一些独立的教程 | 
| 156 | 146 | 
 | 
| 157 | 147 | ### 1) [PyTorch深度学习:60分钟入门与实战](https://github.com/bat67/Deep-Learning-with-PyTorch-A-60-Minute-Blitz-cn) | 
| 158 | 148 | 
 | 
|  | 
| 262 | 252 | 
 | 
| 263 | 253 | 
 | 
| 264 | 254 | 
 | 
| 265 |  | -## 6. How to run? 推荐的运行方式 | 
|  | 255 | +## How to run? 推荐的运行方式 | 
| 266 | 256 | 
 | 
| 267 | 257 | Some code in this repo is separated in blocks using `#%%`.  | 
| 268 | 258 | A block is as same as a cell in `Jupyter Notebook`. So editors/IDEs supporting this functionality is recommanded. | 
|  | 
0 commit comments