Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit daec1aa

Browse files
init commit
0 parents commit daec1aa

24 files changed

+90707
-0
lines changed

‎.ipynb_checkpoints/Module_1_Basic_Descriptive_Statistics-checkpoint.ipynb‎

Lines changed: 644 additions & 0 deletions
Large diffs are not rendered by default.

‎.ipynb_checkpoints/Module_2_Data_Visualization_Seaborn-checkpoint.ipynb‎

Lines changed: 751 additions & 0 deletions
Large diffs are not rendered by default.
Lines changed: 351 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,351 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"# Module 3 Hypothesis Testing"
8+
]
9+
},
10+
{
11+
"cell_type": "code",
12+
"execution_count": 21,
13+
"metadata": {},
14+
"outputs": [],
15+
"source": [
16+
"import statsmodels.api as sm\n",
17+
"sleep = sm.datasets.get_rdataset(\"sleep\").data"
18+
]
19+
},
20+
{
21+
"cell_type": "code",
22+
"execution_count": 22,
23+
"metadata": {},
24+
"outputs": [
25+
{
26+
"data": {
27+
"text/html": [
28+
"<div>\n",
29+
"<style scoped>\n",
30+
" .dataframe tbody tr th:only-of-type {\n",
31+
" vertical-align: middle;\n",
32+
" }\n",
33+
"\n",
34+
" .dataframe tbody tr th {\n",
35+
" vertical-align: top;\n",
36+
" }\n",
37+
"\n",
38+
" .dataframe thead th {\n",
39+
" text-align: right;\n",
40+
" }\n",
41+
"</style>\n",
42+
"<table border=\"1\" class=\"dataframe\">\n",
43+
" <thead>\n",
44+
" <tr style=\"text-align: right;\">\n",
45+
" <th></th>\n",
46+
" <th>extra</th>\n",
47+
" <th>group</th>\n",
48+
" <th>ID</th>\n",
49+
" </tr>\n",
50+
" </thead>\n",
51+
" <tbody>\n",
52+
" <tr>\n",
53+
" <th>0</th>\n",
54+
" <td>0.7</td>\n",
55+
" <td>1</td>\n",
56+
" <td>1</td>\n",
57+
" </tr>\n",
58+
" <tr>\n",
59+
" <th>1</th>\n",
60+
" <td>-1.6</td>\n",
61+
" <td>1</td>\n",
62+
" <td>2</td>\n",
63+
" </tr>\n",
64+
" <tr>\n",
65+
" <th>2</th>\n",
66+
" <td>-0.2</td>\n",
67+
" <td>1</td>\n",
68+
" <td>3</td>\n",
69+
" </tr>\n",
70+
" <tr>\n",
71+
" <th>3</th>\n",
72+
" <td>-1.2</td>\n",
73+
" <td>1</td>\n",
74+
" <td>4</td>\n",
75+
" </tr>\n",
76+
" <tr>\n",
77+
" <th>4</th>\n",
78+
" <td>-0.1</td>\n",
79+
" <td>1</td>\n",
80+
" <td>5</td>\n",
81+
" </tr>\n",
82+
" <tr>\n",
83+
" <th>5</th>\n",
84+
" <td>3.4</td>\n",
85+
" <td>1</td>\n",
86+
" <td>6</td>\n",
87+
" </tr>\n",
88+
" <tr>\n",
89+
" <th>6</th>\n",
90+
" <td>3.7</td>\n",
91+
" <td>1</td>\n",
92+
" <td>7</td>\n",
93+
" </tr>\n",
94+
" <tr>\n",
95+
" <th>7</th>\n",
96+
" <td>0.8</td>\n",
97+
" <td>1</td>\n",
98+
" <td>8</td>\n",
99+
" </tr>\n",
100+
" <tr>\n",
101+
" <th>8</th>\n",
102+
" <td>0.0</td>\n",
103+
" <td>1</td>\n",
104+
" <td>9</td>\n",
105+
" </tr>\n",
106+
" <tr>\n",
107+
" <th>9</th>\n",
108+
" <td>2.0</td>\n",
109+
" <td>1</td>\n",
110+
" <td>10</td>\n",
111+
" </tr>\n",
112+
" <tr>\n",
113+
" <th>10</th>\n",
114+
" <td>1.9</td>\n",
115+
" <td>2</td>\n",
116+
" <td>1</td>\n",
117+
" </tr>\n",
118+
" <tr>\n",
119+
" <th>11</th>\n",
120+
" <td>0.8</td>\n",
121+
" <td>2</td>\n",
122+
" <td>2</td>\n",
123+
" </tr>\n",
124+
" <tr>\n",
125+
" <th>12</th>\n",
126+
" <td>1.1</td>\n",
127+
" <td>2</td>\n",
128+
" <td>3</td>\n",
129+
" </tr>\n",
130+
" <tr>\n",
131+
" <th>13</th>\n",
132+
" <td>0.1</td>\n",
133+
" <td>2</td>\n",
134+
" <td>4</td>\n",
135+
" </tr>\n",
136+
" <tr>\n",
137+
" <th>14</th>\n",
138+
" <td>-0.1</td>\n",
139+
" <td>2</td>\n",
140+
" <td>5</td>\n",
141+
" </tr>\n",
142+
" <tr>\n",
143+
" <th>15</th>\n",
144+
" <td>4.4</td>\n",
145+
" <td>2</td>\n",
146+
" <td>6</td>\n",
147+
" </tr>\n",
148+
" <tr>\n",
149+
" <th>16</th>\n",
150+
" <td>5.5</td>\n",
151+
" <td>2</td>\n",
152+
" <td>7</td>\n",
153+
" </tr>\n",
154+
" <tr>\n",
155+
" <th>17</th>\n",
156+
" <td>1.6</td>\n",
157+
" <td>2</td>\n",
158+
" <td>8</td>\n",
159+
" </tr>\n",
160+
" <tr>\n",
161+
" <th>18</th>\n",
162+
" <td>4.6</td>\n",
163+
" <td>2</td>\n",
164+
" <td>9</td>\n",
165+
" </tr>\n",
166+
" <tr>\n",
167+
" <th>19</th>\n",
168+
" <td>3.4</td>\n",
169+
" <td>2</td>\n",
170+
" <td>10</td>\n",
171+
" </tr>\n",
172+
" </tbody>\n",
173+
"</table>\n",
174+
"</div>"
175+
],
176+
"text/plain": [
177+
" extra group ID\n",
178+
"0 0.7 1 1\n",
179+
"1 -1.6 1 2\n",
180+
"2 -0.2 1 3\n",
181+
"3 -1.2 1 4\n",
182+
"4 -0.1 1 5\n",
183+
"5 3.4 1 6\n",
184+
"6 3.7 1 7\n",
185+
"7 0.8 1 8\n",
186+
"8 0.0 1 9\n",
187+
"9 2.0 1 10\n",
188+
"10 1.9 2 1\n",
189+
"11 0.8 2 2\n",
190+
"12 1.1 2 3\n",
191+
"13 0.1 2 4\n",
192+
"14 -0.1 2 5\n",
193+
"15 4.4 2 6\n",
194+
"16 5.5 2 7\n",
195+
"17 1.6 2 8\n",
196+
"18 4.6 2 9\n",
197+
"19 3.4 2 10"
198+
]
199+
},
200+
"execution_count": 22,
201+
"metadata": {},
202+
"output_type": "execute_result"
203+
}
204+
],
205+
"source": [
206+
"sleep"
207+
]
208+
},
209+
{
210+
"cell_type": "code",
211+
"execution_count": 99,
212+
"metadata": {},
213+
"outputs": [
214+
{
215+
"data": {
216+
"text/plain": [
217+
"<matplotlib.axes._subplots.AxesSubplot at 0x131209710>"
218+
]
219+
},
220+
"execution_count": 99,
221+
"metadata": {},
222+
"output_type": "execute_result"
223+
},
224+
{
225+
"data": {
226+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD8CAYAAABjAo9vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAACzBJREFUeJzt3V+IXGcdxvHnMY02tWkLZlBppCvoRWslVsaAtIgGDdW0/kW0ol54sV4oKFjsimjpXXojCnqzaDGgVgQNaqO2FVtCBP9MYqtJo6AlxVYxU8SYSFpTfbzIinHdmOycd/7kt98PLNmdOfO+78XZ7x5OzpxxEgEA6njWtBcAAGiLsANAMYQdAIoh7ABQDGEHgGIIOwAUQ9gBoBjCDgDFEHYAKOaiaUy6adOmzM3NTWNqALhg7d+//8kkvXNtN5Wwz83NaTAYTGNqALhg2X7sfLbjVAwAFEPYAaAYwg4AxRB2ACiGsANAMYQdAIoh7ABQDGEHgGKm8gYlALXYXvVr+Lzl8eGIHUBnSVb8uuq2e876HMaHsANAMYQdAIoh7ABQDGEHgGIIOwAUQ9gBoBjCDgDFEHYAKIawA0AxTW4pYPuIpOOS/iHpmST9FuMCAFav5b1iXpfkyYbjAQBGwKkYACimVdgj6T7b+23Pr7SB7XnbA9uD4XDYaFoAwHKtwn5DkldKeqOkD9l+zfINkiwm6Sfp93q9RtMCAJZrEvYkTyz9e1TSbklbW4wLAFi9zmG3/VzbG//9vaTtkg52HRcAMJoWV8U8X9LupU9QuUjS15L8oMG4AIARdA57kkclbWmwFgBAA1zuCADFEHYAKIawA0AxhB0AiiHsAFAMYQeAYgg7ABRD2AGgGMIOAMUQdgAohrADQDGEHQCKIewAUAxhB4BiCDsAFEPYAaAYwg4AxRB2ACimxWeeSpJsr5M0kPREkptajQtgNmy54z4dO3lq1a+bW9izqu0v37BeD9++fdXz4D+ahV3SRyQdlnRZwzEBzIhjJ0/pyM4dY59ntX8I8L+anIqxvVnSDklfbDEeAGB0rc6xf1bSxyX9s9F4AIARdQ677ZskHU2y/xzbzdse2B4Mh8Ou0wIAzqLFEfv1kt5s+4ikr0vaZvsryzdKspikn6Tf6/UaTAsAWEnnsCf5RJLNSeYkvVvSj5K8t/PKAAAj4Tp2ACim5eWOSvKgpAdbjgkAWB2O2AGgGMIOAMUQdgAopuk5doyP7ZFel6TxSgDMOo7YLxBJzvp11W33nPU5AGsPYQeAYgg7ABRD2AGgGMIOAMUQdgAohrADQDGEHQCKIewAUAxhB4BiCDsAFEPYAaAYwg4AxRB2ACiGsANAMZ3Dbvti2z+z/bDtQ7bvaLEwAMBoWnzQxtOStiU5YXu9pH22v5/kJw3GBgCsUuew5/SnOZxY+nH90hef8AAAU9LkHLvtdbYfknRU0v1JftpiXADA6jUJe5J/JHmFpM2Sttq+dvk2tudtD2wPhsNhi2kBACtoelVMkr9IekDSjSs8t5ikn6Tf6/VaTgsAOEOLq2J6tq9Y+n6DpDdI+nXXcQEAo2lxVcwLJe2yvU6n/1B8I8k9DcYFAIygxVUxv5R0XYO1AAAa4J2nAFAMYQeAYgg7ABRD2AGgGMIOAMUQdgAohrADQDGEHQCKIewAUAxhB4BiCDsAFEPYAaAYwg4AxRB2ACiGsANAMYQdAIoh7ABQDGEHgGIIOwAU0znstl9k+wHbj9g+ZPsjLRYGABhN5w+zlvSMpI8lOWB7o6T9tu9P8kiDsQEAq9T5iD3JH5McWPr+uKTDkq7sOi4AYDRNz7HbnpN0naSfthwXAHD+moXd9qWSvinpo0n+usLz87YHtgfD4bDVtACAZZqE3fZ6nY76V5N8a6Vtkiwm6Sfp93q9FtMCAFbQ4qoYS/qSpMNJPtN9SQCALlocsV8v6X2Sttl+aOnrTQ3GBQCMoPPljkn2SXKDtQAAGuCdpwBQDGEHgGJavPMUwBqw8eoFvXzXwgTmkaQdY5+nMsI+Y7bccZ+OnTy16tfNLew5720v37BeD9++fdVzYG07fninjuwcf3BXsy9jZYR9xhw7eWrsvzz84gC1cY4dAIoh7ABQDGEHgGIIOwAUQ9gBoBjCDgDFEHYAKIawA0AxhB0AiiHsAFAMYQeAYgg7ABRD2AGgGMIOAMU0Cbvtu2wftX2wxXgAgNG1OmL/sqQbG40FAOigSdiT7JX05xZjAQC64Rw7ABQzsbDbnrc9sD0YDoeTmhYA1pyJhT3JYpJ+kn6v15vUtACw5nAqBgCKuajFILbvlvRaSZtsPy7p9iRfajE2gNkxt7Bn7HNcvmH92OeorknYk9zSYhwAs+vIzh2rfs3cwp6RXoduOBUDAMUQdgAohrADQDGEHQCKIewAUAxhB4BiCDsAFEPYAaAYwg4AxRB2ACiGsANAMYQdAIoh7ABQTJO7O6KdjVcv6OW7FsY8hyRxxz2gKsI+Y44f3jn225xO4p7aAKaHUzEAUAxhB4BiCDsAFEPYAaCYJmG3faPt39j+re3xXtIBAPi/Oofd9jpJX5D0RknXSLrF9jVdxwUAjKbFEftWSb9N8miSv0v6uqS3NBgXADCCFmG/UtLvz/j58aXH/ovtedsD24PhcNhgWgDASib2n6dJFpP0k/R7vd6kpgWANadF2J+Q9KIzft689BgAYApa3FLg55JeavvFOh30d0t6T4NxAVwgbJ/9uTtXfjzJmFaDzmFP8oztD0u6V9I6SXclOdR5ZQAuGER6tjS5CViS70n6XouxMP6bdF2+Yf1YxwcwXdzdccaMcmfHuYU9Y78jJIALB7cUAIBiCDsAFEPYAaAYwg4AxRB2ACiGsANAMYQdAIoh7ABQDGEHgGIIOwAUQ9gBoBjCDgDFEHYAKIawA0AxhB0AiiHsAFAMYQeAYgg7ABTTKey232n7kO1/2u63WhQAYHRdj9gPSnq7pL0N1gIAaKDTh1knOSxJttusBgDQ2cTOsduetz2wPRgOh5OaFgDWnHMesdv+oaQXrPDUJ5N8+3wnSrIoaVGS+v1+znuFAIBVOWfYk7x+EgsBALTB5Y4AUEzXyx3fZvtxSa+WtMf2vW2WBQAYVderYnZL2t1oLQCABjgVAwDFEHYAKIawA0AxhB0AiiHsAFAMYQeAYgg7ABRD2AGgGMIOAMUQdgAohrADQDGd7hWDyTnXp1T5zpUfT7j1PbDWEPYLBIEGcL44FQMAxRB2ACiGsANAMYQdAIoh7ABQDGEHgGIIOwAUQ9gBoBhP440vtoeSHpv4xHVtkvTktBcBrIB9s62rkvTOtdFUwo62bA+S9Ke9DmA59s3p4FQMABRD2AGgGMJew+K0FwCcBfvmFHCOHQCK4YgdAIoh7EXZfp7tB2yfsP35aa8H+Dfbb7C93/avlv7dNu01VcMHbdT1lKRPSbp26QuYFU9KujnJH2xfK+leSVdOeU2lcMQ+w2x/yvZvbO+zfbftW5cef9D252w/ZPug7a3LX5vkb0n26XTggaY67pu/SPKHpR8PSdpg+zmTXH91HLHPKNuvkvQOSVskrZd0QNL+Mza5JMkrbL9G0l3iqBwT0njffIekA0meHtd61yKO2GfX9ZK+neSpJMclfXfZ83dLUpK9ki6zfcWkF4g1q8m+aftlku6U9MFxLnYtIuwXruXXqXLdKmbFOfdN25sl7Zb0/iS/m8iq1hDCPrt+LOlm2xfbvlTSTcuef5ck2b5B0rEkxya9QKxZnfbNpSP4PZIWkvx4EgteazjHPqOS/Nz2dyT9UtKfJP1K0pm/IE/Z/oVOn+P8wEpj2D4i6TJJz7b9Vknbkzwy1oWjvAb75oclvUTSp21/eumx7UmOjnHZawrvPJ1hti9NcsL2JZL2SppPcsD2g5JuTTKY7gqxVrFvzjaO2Gfbou1rJF0saVeSA9NeELCEfXOGccQOAMXwn6cAUAxhB4BiCDsAFEPYAaAYwg4AxRB2ACjmX3Ez3xnadtJxAAAAAElFTkSuQmCC\n",
227+
"text/plain": [
228+
"<Figure size 432x288 with 1 Axes>"
229+
]
230+
},
231+
"metadata": {},
232+
"output_type": "display_data"
233+
}
234+
],
235+
"source": [
236+
"gp1 = sleep[sleep.group==1].extra\n",
237+
"gp2 = sleep[sleep.group==2].extra\n",
238+
"\n",
239+
"c = pd.DataFrame({'gp 1':gp1.values,'gp 2':gp2.values})\n",
240+
"c.plot(kind='box')"
241+
]
242+
},
243+
{
244+
"cell_type": "code",
245+
"execution_count": 100,
246+
"metadata": {},
247+
"outputs": [
248+
{
249+
"data": {
250+
"text/plain": [
251+
"0.07918671421593818"
252+
]
253+
},
254+
"execution_count": 100,
255+
"metadata": {},
256+
"output_type": "execute_result"
257+
}
258+
],
259+
"source": [
260+
"import scipy\n",
261+
"\n",
262+
"result = scipy.stats.ttest_ind(gp1,gp2)\n",
263+
"result.pvalue"
264+
]
265+
},
266+
{
267+
"cell_type": "code",
268+
"execution_count": 101,
269+
"metadata": {},
270+
"outputs": [
271+
{
272+
"data": {
273+
"text/plain": [
274+
"0.00283289019738427"
275+
]
276+
},
277+
"execution_count": 101,
278+
"metadata": {},
279+
"output_type": "execute_result"
280+
}
281+
],
282+
"source": [
283+
"a1 = gp1.reset_index().extra\n",
284+
"b1 = gp2.reset_index().extra\n",
285+
"result = stats.ttest_1samp(a1-b1, 0)\n",
286+
"result.pvalue"
287+
]
288+
},
289+
{
290+
"cell_type": "code",
291+
"execution_count": 72,
292+
"metadata": {},
293+
"outputs": [],
294+
"source": [
295+
"chickwts = sm.datasets.get_rdataset(\"chickwts\").data"
296+
]
297+
},
298+
{
299+
"cell_type": "code",
300+
"execution_count": 98,
301+
"metadata": {},
302+
"outputs": [
303+
{
304+
"data": {
305+
"text/plain": [
306+
"8.254541016953191e-07"
307+
]
308+
},
309+
"execution_count": 98,
310+
"metadata": {},
311+
"output_type": "execute_result"
312+
}
313+
],
314+
"source": [
315+
"horsebean = chickwts[chickwts.feed=='horsebean'].weight\n",
316+
"casein = chickwts[chickwts.feed=='casein'].weight\n",
317+
"\n",
318+
"result = scipy.stats.ttest_ind(horsebean,casein)\n",
319+
"result.pvalue"
320+
]
321+
},
322+
{
323+
"cell_type": "code",
324+
"execution_count": null,
325+
"metadata": {},
326+
"outputs": [],
327+
"source": []
328+
}
329+
],
330+
"metadata": {
331+
"kernelspec": {
332+
"display_name": "Python 3",
333+
"language": "python",
334+
"name": "python3"
335+
},
336+
"language_info": {
337+
"codemirror_mode": {
338+
"name": "ipython",
339+
"version": 3
340+
},
341+
"file_extension": ".py",
342+
"mimetype": "text/x-python",
343+
"name": "python",
344+
"nbconvert_exporter": "python",
345+
"pygments_lexer": "ipython3",
346+
"version": "3.6.5"
347+
}
348+
},
349+
"nbformat": 4,
350+
"nbformat_minor": 2
351+
}

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /