Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit e588033

Browse files
Update README.md
1 parent 8f7187f commit e588033

File tree

1 file changed

+46
-46
lines changed

1 file changed

+46
-46
lines changed

‎README.md‎

Lines changed: 46 additions & 46 deletions
Original file line numberDiff line numberDiff line change
@@ -44,66 +44,66 @@ By the end of this book, you will be equipped with the skills you need to implem
4444

4545
## Table of contents
4646

47-
### [1. Introduction to Deep Learning](#)
47+
### [1. Introduction to Deep Learning](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/tree/master/01.%20Introduction%20to%20Deep%20Learning)
4848

49-
* [1.1. What is Deep Learning?](#)
49+
* [1.1. What is Deep Learning?](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/01.%20Introduction%20to%20Deep%20Learning/1.01%20What%20is%20Deep%20Learning%3F.ipynb)
5050
* 1.2. Biological and Artifical Neurons
5151
* 1.3. ANN and its Layers
5252
* 1.4. Exploring Activation Functions
5353
* 1.5. Forward Propagation in ANN
5454
* 1.6. How does ANN learn?
5555
* 1.7. Debugging Gradient Descent with Gradient Checking
5656
* 1.8. Putting it all together
57-
* [1.9. Building Neural Network from Scratch](#)
57+
* [1.9. Building Neural Network from Scratch](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/01.%20Introduction%20to%20Deep%20Learning/1.09%20Building%20Neural%20Network%20from%20scratch.ipynb)
5858

5959

60-
### [2. Getting to Know TensorFlow](#)
60+
### [2. Getting to Know TensorFlow](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/tree/master/02.%20Getting%20to%20Know%20TensorFlow)
6161

6262
* 2.1. What is TensorFlow?
6363
* 2.2. Understanding Computational Graphs and Sessions
6464
* 2.3. Variables, Constants, and Placeholders
6565
* 2.4. Introducing TensorBoard
66-
* [2.5. Handwritten digits classification using Tensorflow ](#)
66+
* [2.5. Handwritten digits classification using Tensorflow ](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/02.%20Getting%20to%20Know%20TensorFlow/2.05%20Handwritten%20digits%20classification%20using%20TensorFlow.ipynb)
6767
* 2.6. Visualizing Computational graph in TensorBord
6868
* 2.7. Introducing Eager execution
69-
* [2.8. Math operations in TensorFlow](#)
70-
* [2.9. Tensorflow 2.0 and Keras](#)
71-
* 2.10. MNIST digits classification in Tensorflow 2.0
72-
* 2.11. Should we use Keras or TensorFlow?
69+
* [2.8. Math operations in TensorFlow](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/02.%20Getting%20to%20Know%20TensorFlow/2.08%20Math%20operations%20in%20TensorFlow.ipynb)
70+
* 2.9. Tensorflow 2.0 and Keras
71+
* [2.10. MNIST digits classification in Tensorflow 2.0](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/02.%20Getting%20to%20Know%20TensorFlow/2.10%20MNIST%20digits%20classification%20in%20TensorFlow%202.0.ipynb)
72+
* [2.11. Should we use Keras or TensorFlow?](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/02.%20Getting%20to%20Know%20TensorFlow/2.11%20Should%20we%20use%20Keras%20or%20TensorFlow%3F.ipynb)
7373

7474

7575

76-
### [3. Gradient Descent and its variants](#)
76+
### [3. Gradient Descent and its variants](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/tree/master/03.%20Gradient%20Descent%20and%20its%20variants)
7777

78-
* [3.1. Demystifying Gradient Descent](#)
79-
* [3.2. Performing Gradient Descent in Regression](#)
78+
* [3.1. Demystifying Gradient Descent](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/03.%20Gradient%20Descent%20and%20its%20variants/3.01%20Demystifying%20Gradient%20Descent.ipynb)
79+
* [3.2. Performing Gradient Descent in Regression](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/03.%20Gradient%20Descent%20and%20its%20variants/3.02%20Performing%20Gradient%20Descent%20in%20Regression.ipynb)
8080
* 3.3. Gradient Descent vs Stochastic Gradient Descent
8181
* 3.4. Momentum based Gradient Descent
8282
* 3.5. Adaptive methods of Gradient Descent
83-
* [ 3.6. Implementing Various Gradient descent methods from Scratch](#)
83+
* [ 3.6. Implementing Various Gradient descent methods from Scratch](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/03.%20Gradient%20Descent%20and%20its%20variants/3.06%20%20Implementing%20Several%20Variants%20of%20Gradient%20Descent%20from%20Scratch.ipynb)
8484

8585

8686

87-
### [4. Generating Song lyrics with RNN](#)
87+
### [4. Generating Song lyrics with RNN](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/tree/master/04.%20Generating%20Song%20Lyrics%20Using%20RNN)
8888

8989

90-
* [4.1. Hola Recurrent Neural Networks](#)
90+
* [4.1. Hola Recurrent Neural Networks](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/04.%20Generating%20Song%20Lyrics%20Using%20RNN/4.01%20Hola%20Recurrent%20Neural%20Networks.ipynb)
9191
* 4.2. Forward Propagation in RNN
9292
* 4.3. Backpropagation through time (BPTT)
9393
* 4.4. Deriving BPTT step by step
9494
* 4.5. Vanishing and Exploding Gradients
95-
* [4.6. Generating song lyrics using RNN](#)
95+
* [4.6. Generating song lyrics using RNN](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/04.%20Generating%20Song%20Lyrics%20Using%20RNN/4.06%20Generating%20Song%20Lyrics%20Using%20RNN.ipynb)
9696
* 4.7. Different types of RNN architectures
9797

9898

99-
### [5. Improvements to the RNN](#)
99+
### [5. Improvements to the RNN](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/tree/master/05.%20Improvements%20to%20the%20RNN)
100100

101-
* [5.1. LSTM to the Rescue](#)
101+
* 5.1. LSTM to the Rescue
102102
* 5.2. Understanding the LSTM cell
103103
* 5.3. Forward propagation in LSTM
104104
* 5.4. Backpropagation in LSTM
105105
* 5.5. Deriving backpropagation of LSTM Step by step
106-
* [5.6. Predicting Bitcoins price using LSTM](#)
106+
* [5.6. Predicting Bitcoins price using LSTM](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/05.%20Improvements%20to%20the%20RNN/5.06%20Predicting%20Bitcoins%20price%20using%20LSTM%20RNN.ipynb)
107107
* 5.7. Gated Recurrent Units
108108
* 5.8. Understanding GRU cell
109109
* 5.9. Forward propagation in GRU cell
@@ -114,84 +114,84 @@ By the end of this book, you will be equipped with the skills you need to implem
114114
* 5.14. Language Translation Seq2seq models
115115

116116

117-
### [6. Demystifying Convolutional Networks](#)
117+
### [6. Demystifying Convolutional Networks](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/tree/master/06.%20Demystifying%20Convolutional%20Networks)
118118

119119
* 6.1. What is CNN?
120120
* 6.2. Architecture of CNN
121121
* 6.3. Math of CNN
122-
* [ 6.4. Implementing CNN in tensorflow](#)
122+
* [ 6.4. Implementing CNN in tensorflow](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/06.%20Demystifying%20Convolutional%20Networks/6.04%20Implementing%20CNN%20in%20TensorFlow.ipynb)
123123
* 6.5. Different types of CNN architectures
124124
* 6.6. Capsule networks
125-
* [6.7. Building capsule networks in Tensorflow](#)
125+
* [6.7. Building capsule networks in Tensorflow](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/06.%20Demystifying%20Convolutional%20Networks/6.07%20Building%20Capsule%20Networks%20in%20TensorFlow.ipynb)
126126

127127

128-
### [7. Learning Text Representations](#)
128+
### [7. Learning Text Representations](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/tree/master/07.%20Learning%20Text%20Representations)
129129

130-
* 7.1. Understanding Word2vec Model
130+
* [7.1. Understanding Word2vec Model](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/07.%20Learning%20Text%20Representations/7.01%20Understanding%20Word2vec%20Model.ipynb)
131131
* 7.2. Continuous Bag of words
132132
* 7.3. Math of CBOW
133133
* 7.4. Skip- Gram model
134134
* 7.5. Math of Skip-Gram
135135
* 7.6. various training strategies
136-
* [ 7.7. Building word2vec model using Gensim](#)
137-
* [7.8. Visualizing word embeddings in TensorBoard](#)
136+
* [ 7.7. Building word2vec model using Gensim](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/07.%20Learning%20Text%20Representations/7.07%20Building%20word2vec%20model%20using%20Gensim.ipynb)
137+
* [7.8. Visualizing word embeddings in TensorBoard](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/07.%20Learning%20Text%20Representations/7.08%20Visualizing%20Word%20Embeddings%20in%20TensorBoard.ipynb)
138138
* 7.9. Converting documents to vectors using doc2vec
139-
* [7.10. Finding similar documents using Doc2vec](#)
139+
* [7.10. Finding similar documents using Doc2vec](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/07.%20Learning%20Text%20Representations/7.10%20Finding%20similar%20documents%20using%20Doc2Vec.ipynb)
140140
* 7.11. Understanding skip thoughts algorithm
141141
* 7.12 Quick thoughts for sentence embeddings
142142

143143

144-
### [8. Generating Images using GANs](#)
144+
### [8. Generating Images using GANs](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/tree/master/08.%20Generating%20Images%20using%20GANs)
145145

146-
* 8.1. Distinguishing generative and discriminative models
146+
* [8.1. Distinguishing generative and discriminative models](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/08.%20Generating%20Images%20using%20GANs/8.04%20Demystifying%20GAN%20Loss%20Function.ipynb)
147147
* 8.2. Say hello to GANs
148148
* 8.3. Architecture of GANs
149149
* 8.4. Demystifying GAN loss function
150-
* [8.5. Generating images using GAN in TensorFlow](#)
150+
* [8.5. Generating images using GAN in TensorFlow](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/08.%20Generating%20Images%20using%20GANs/8.05%20Generating%20images%20using%20GAN%20in%20TensorFlow.ipynb)
151151
* 8.6. DCGAN - Adding convolution to the GAN
152-
* [8.7. Implementing DCGAN to generate CIFAR images](#)
152+
* [8.7. Implementing DCGAN to generate CIFAR images](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/08.%20Generating%20Images%20using%20GANs/8.07%20Implementing%20DCGAN%20to%20Generate%20CIFAR%20Images.ipynb)
153153
* 8.8. Least Squares GAN
154-
* [8.9. Building LSGAN in tensorflow](#)
154+
* [8.9. Building LSGAN in tensorflow](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/08.%20Generating%20Images%20using%20GANs/8.09%20Building%20LSGAN%20in%20TensorFlow.ipynb)
155155
* 8.10. WGAN - GANs with Wasserstein distance
156156

157157

158-
### [9. Learning more about GANs](#)
158+
### [9. Learning more about GANs](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/tree/master/09.%20Learning%20more%20about%20GANs)
159159

160160
* 9.1. Conditional GAN
161-
* [9.2. Generating specific digits using CGAN](#)
161+
* [9.2. Generating specific digits using CGAN](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/09.%20Learning%20more%20about%20GANs/9.02%20Generating%20Specific%20Handwritten%20Digit%20Using%20CGAN.ipynb)
162162
* 9.3. Understanding InfoGAN
163163
* 9.4. Architecture of InfoGAN
164-
* [9.5. Constructing InfoGAN in tensorflow](#)
164+
* [9.5. Constructing InfoGAN in tensorflow](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/09.%20Learning%20more%20about%20GANs/9.05%20Constructing%20InfoGan%20in%20Tensorflow.ipynb)
165165
* 9.6. Translating images using CycleGAN
166-
* [9.7. Converting photos to paintings using CycleGAN](#)
166+
* [9.7. Converting photos to paintings using CycleGAN](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/09.%20Learning%20more%20about%20GANs/9.07%20Converting%20photos%20to%20paintings%20using%20CycleGAN.ipynb)
167167
* 9.8. Text to image synthesis using Stack GAN
168168

169169

170-
### [10. Reconstructing inputs using Autoencoders](#)
170+
### [10. Reconstructing inputs using Autoencoders](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/tree/master/10.%20Reconsturcting%20Inputs%20using%20Autoencoders)
171171

172172
* 10.1. What is Autoencoder?
173173
* 10.2. Understanding the architecture of autoencoders
174-
* [10.3. Reconstructing MNIST images using autoencoders](#)
174+
* [10.3. Reconstructing MNIST images using autoencoders](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/10.%20Reconsturcting%20Inputs%20using%20Autoencoders/10.03%20Reconstructing%20MNIST%20images%20using%20Autoencoder.ipynb)
175175
* 10.4. Autoencoders with convolution
176-
* [10.5. Building convolution autoencoder](#)
176+
* [10.5. Building convolution autoencoder](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/10.%20Reconsturcting%20Inputs%20using%20Autoencoders/10.05%20Building%20Convolutional%20Autoencoder.ipynb)
177177
* 10.6. Exploring denoising autoencoder
178-
* [10.7. Denoising images using DAE](#)
178+
* [10.7. Denoising images using DAE](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/10.%20Reconsturcting%20Inputs%20using%20Autoencoders/10.07%20Denoising%20images%20using%20Denoising%20Autoencoder.ipynb)
179179
* 10.8. Understanding sparse autoencoders
180-
* [10.9. Building sparse autoencoders](#)
180+
* [10.9. Building sparse autoencoders](#https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/10.%20Reconsturcting%20Inputs%20using%20Autoencoders/10.09%20Building%20the%20Sparse%20Autoencoder.ipynb
181181
* 10.10. Learning to use contractive autoencoders
182-
* [10.11. Implementing contractive autoencoders](#)
182+
* [10.11. Implementing contractive autoencoders](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/10.%20Reconsturcting%20Inputs%20using%20Autoencoders/10.11%20Implementing%20Contractive%20Autoencoders.ipynb)
183183
* 10.12. Dissecting variational autoencoders
184-
* [10.13. Generating images using VAE](#)
184+
* [10.13. Generating images using VAE](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/10.%20Reconsturcting%20Inputs%20using%20Autoencoders/10.13%20Generating%20images%20using%20VAE.ipynb)
185185

186186

187187

188188

189-
### [11. Exploring few-shot learning algorithms](#)
189+
### [11. Exploring few-shot learning algorithms](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/tree/master/11.%20Exploring%20Few%20Shot%20Learning%20Algorithms)
190190

191-
* [11.1. What is few-shot learning?](#)
191+
* [11.1. What is few-shot learning?](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/11.%20Exploring%20Few%20Shot%20Learning%20Algorithms/11.01%20What%20is%20few-shot%20learning%3F.ipynb)
192192
* 11.2. Understanding Siamese Networks?
193193
* 11.3. Prototypical Networks
194194
* 11.4. Relation Networks
195195
* 11.5. Matching Networks
196196
* 11.6. Architecture of Matching networks
197-
* [11.7. What's Next?](#)
197+
* [11.7. What's Next?](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/11.%20Exploring%20Few%20Shot%20Learning%20Algorithms/11.07%20What's%20Next%3F.ipynb)

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /