Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit e374d77

Browse files
Update evaluate.py
fix a bug
1 parent 129d10b commit e374d77

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

‎evaluate.py‎

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -132,6 +132,7 @@ def predict_sliding(net, image, tile_size, classes, flip_evaluation, recurrence)
132132
return full_probs
133133

134134
def predict_whole(net, image, tile_size, recurrence):
135+
image = torch.from_numpy(image)
135136
interp = nn.Upsample(size=tile_size, mode='bilinear', align_corners=True)
136137
prediction = net(image.cuda())
137138
if isinstance(prediction, list):
@@ -152,10 +153,9 @@ def predict_multiscale(net, image, tile_size, scales, classes, flip_evaluation,
152153
scale = float(scale)
153154
print("Predicting image scaled by %f" % scale)
154155
scale_image = ndimage.zoom(image, (1.0, 1.0, scale, scale), order=1, prefilter=False)
155-
scale_image = torch.from_numpy(scale_image)
156156
scaled_probs = predict_whole(net, scale_image, tile_size, recurrence)
157-
if flip_evaluation == 'True':
158-
flip_scaled_probs = predict_whole_img(net, scale_image[:,:,:,::-1].copy(), tile_size, recurrence)
157+
if flip_evaluation == True:
158+
flip_scaled_probs = predict_whole(net, scale_image[:,:,:,::-1].copy(), tile_size, recurrence)
159159
scaled_probs = 0.5 * (scaled_probs + flip_scaled_probs[:,::-1,:])
160160
full_probs += scaled_probs
161161
full_probs /= len(scales)

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /