@@ -132,6 +132,7 @@ def predict_sliding(net, image, tile_size, classes, flip_evaluation, recurrence)
132132 return full_probs
133133
134134def predict_whole (net , image , tile_size , recurrence ):
135+ image = torch .from_numpy (image )
135136 interp = nn .Upsample (size = tile_size , mode = 'bilinear' , align_corners = True )
136137 prediction = net (image .cuda ())
137138 if isinstance (prediction , list ):
@@ -152,10 +153,9 @@ def predict_multiscale(net, image, tile_size, scales, classes, flip_evaluation,
152153 scale = float (scale )
153154 print ("Predicting image scaled by %f" % scale )
154155 scale_image = ndimage .zoom (image , (1.0 , 1.0 , scale , scale ), order = 1 , prefilter = False )
155- scale_image = torch .from_numpy (scale_image )
156156 scaled_probs = predict_whole (net , scale_image , tile_size , recurrence )
157- if flip_evaluation == ' True' :
158- flip_scaled_probs = predict_whole_img (net , scale_image [:,:,:,::- 1 ].copy (), tile_size , recurrence )
157+ if flip_evaluation == True :
158+ flip_scaled_probs = predict_whole (net , scale_image [:,:,:,::- 1 ].copy (), tile_size , recurrence )
159159 scaled_probs = 0.5 * (scaled_probs + flip_scaled_probs [:,::- 1 ,:])
160160 full_probs += scaled_probs
161161 full_probs /= len (scales )
0 commit comments