Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 2847821

Browse files
Add files via upload
1 parent b33b602 commit 2847821

File tree

1 file changed

+292
-0
lines changed

1 file changed

+292
-0
lines changed

‎SVM_wine_data.ipynb‎

Lines changed: 292 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,292 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"# importing the modules"
8+
]
9+
},
10+
{
11+
"cell_type": "code",
12+
"execution_count": 1,
13+
"metadata": {
14+
"collapsed": true
15+
},
16+
"outputs": [],
17+
"source": [
18+
"#importin the library from the pip\n",
19+
"#installing libraries \n",
20+
"#pip3 install numpy, pandas, scikit\n",
21+
"import numpy as np\n",
22+
"import pandas as pd\n",
23+
"from sklearn import datasets"
24+
]
25+
},
26+
{
27+
"cell_type": "markdown",
28+
"metadata": {},
29+
"source": [
30+
"# Loading the Data"
31+
]
32+
},
33+
{
34+
"cell_type": "code",
35+
"execution_count": 2,
36+
"metadata": {
37+
"collapsed": true
38+
},
39+
"outputs": [],
40+
"source": [
41+
"#this is the import dataset from the scikit learn\n",
42+
"wine = datasets.load_wine()"
43+
]
44+
},
45+
{
46+
"cell_type": "markdown",
47+
"metadata": {},
48+
"source": [
49+
"# Features and Labels"
50+
]
51+
},
52+
{
53+
"cell_type": "code",
54+
"execution_count": 3,
55+
"metadata": {
56+
"collapsed": true
57+
},
58+
"outputs": [],
59+
"source": [
60+
"#here x denotes to the Features For the Data\n",
61+
"X = wine.data\n",
62+
"#here y denotes to the Labels for the data\n",
63+
"\"\"\"target is the labels for the data it consists of the classes or the prediction values\"\"\"\n",
64+
"y = wine.target"
65+
]
66+
},
67+
{
68+
"cell_type": "markdown",
69+
"metadata": {},
70+
"source": [
71+
"# Train_Test_Split"
72+
]
73+
},
74+
{
75+
"cell_type": "raw",
76+
"metadata": {},
77+
"source": [
78+
"\"\"\"here we will separate the into the parts train part and the test part and into the split part of the data\n",
79+
"X_train, y_train consists of the only training features and the labels Example:- train_size = 0.8 it will consider \n",
80+
"80 persent training and 20 persent test (X_test, y_test) \"\"\""
81+
]
82+
},
83+
{
84+
"cell_type": "code",
85+
"execution_count": 4,
86+
"metadata": {},
87+
"outputs": [],
88+
"source": [
89+
"from sklearn.model_selection import train_test_split\n",
90+
"X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)"
91+
]
92+
},
93+
{
94+
"cell_type": "markdown",
95+
"metadata": {},
96+
"source": [
97+
"# Standerlization"
98+
]
99+
},
100+
{
101+
"cell_type": "raw",
102+
"metadata": {},
103+
"source": [
104+
"\"\"\"Here we are going to discuss about the scaling techniques the main important scaling technique is StandardScaler\n",
105+
"which will allow Data in Between the [1, 0] Tis is one of the most import preprocessing technique\"\"\""
106+
]
107+
},
108+
{
109+
"cell_type": "code",
110+
"execution_count": 5,
111+
"metadata": {},
112+
"outputs": [],
113+
"source": [
114+
"from sklearn.preprocessing import StandardScaler\n",
115+
"sc = StandardScaler()\n",
116+
"X_train = sc.fit_transform(X_train)\n",
117+
"X_test = sc.transform(X_test)"
118+
]
119+
},
120+
{
121+
"cell_type": "markdown",
122+
"metadata": {},
123+
"source": [
124+
"# SVM(Support Vector Machine)"
125+
]
126+
},
127+
{
128+
"cell_type": "raw",
129+
"metadata": {},
130+
"source": [
131+
"\"\"\" we are importing Support vector Machine from the Scikit Learn \n",
132+
"Present we are working with SVC(Support Vector Classifier) \n",
133+
"C is the most important parameter which says about the regularization and create good Hyper perameter line \n",
134+
"in the algorithm and also know as Penalty parameter C of the error term, random_state is the parameter which will use as the seed function it will work with \n",
135+
"random numbers , Kernel is the used to use for to solve non-linear complex dimention(Features) in the data set\n",
136+
"degree is used for only the poly nomial kernels , (rbf, linear, poly, sigmoid)\"\"\""
137+
]
138+
},
139+
{
140+
"cell_type": "code",
141+
"execution_count": 6,
142+
"metadata": {},
143+
"outputs": [
144+
{
145+
"data": {
146+
"text/plain": [
147+
"SVC(C=1, cache_size=200, class_weight=None, coef0=0.0,\n",
148+
" decision_function_shape='ovr', degree=3, gamma='auto_deprecated',\n",
149+
" kernel='rbf', max_iter=-1, probability=False, random_state=0,\n",
150+
" shrinking=True, tol=0.001, verbose=False)"
151+
]
152+
},
153+
"execution_count": 6,
154+
"metadata": {},
155+
"output_type": "execute_result"
156+
}
157+
],
158+
"source": [
159+
"from sklearn.svm import SVC\n",
160+
"ppn = SVC(C=1, random_state = 0)\n",
161+
"ppn.fit(X_train,y_train)"
162+
]
163+
},
164+
{
165+
"cell_type": "markdown",
166+
"metadata": {},
167+
"source": [
168+
"# predicting"
169+
]
170+
},
171+
{
172+
"cell_type": "code",
173+
"execution_count": 7,
174+
"metadata": {
175+
"collapsed": true
176+
},
177+
"outputs": [],
178+
"source": [
179+
"y_pred = ppn.predict(X_test)"
180+
]
181+
},
182+
{
183+
"cell_type": "markdown",
184+
"metadata": {},
185+
"source": [
186+
"# misscalssification"
187+
]
188+
},
189+
{
190+
"cell_type": "code",
191+
"execution_count": 8,
192+
"metadata": {},
193+
"outputs": [
194+
{
195+
"data": {
196+
"text/plain": [
197+
"0"
198+
]
199+
},
200+
"execution_count": 8,
201+
"metadata": {},
202+
"output_type": "execute_result"
203+
}
204+
],
205+
"source": [
206+
"(y_pred != y_test).sum()"
207+
]
208+
},
209+
{
210+
"cell_type": "markdown",
211+
"metadata": {},
212+
"source": [
213+
"# Accuracy"
214+
]
215+
},
216+
{
217+
"cell_type": "code",
218+
"execution_count": 9,
219+
"metadata": {
220+
"scrolled": true
221+
},
222+
"outputs": [
223+
{
224+
"data": {
225+
"text/plain": [
226+
"1.0"
227+
]
228+
},
229+
"execution_count": 9,
230+
"metadata": {},
231+
"output_type": "execute_result"
232+
}
233+
],
234+
"source": [
235+
"from sklearn.metrics import accuracy_score\n",
236+
"accuracy_score(y_test, y_pred)"
237+
]
238+
},
239+
{
240+
"cell_type": "raw",
241+
"metadata": {
242+
"collapsed": true
243+
},
244+
"source": [
245+
"\"\"\"NEXT I'M GOING TO DISCUSS ABOUT THE SUPPORT VECTOR MACHINE \n",
246+
"2. SUPPORT VECTOR REGRESSION \n",
247+
"Thanks IF YOU ARE INTERESTED FOLLOW ME ON GITHUB\n",
248+
"\n",
249+
"REGARDS\"\"\""
250+
]
251+
},
252+
{
253+
"cell_type": "code",
254+
"execution_count": null,
255+
"metadata": {
256+
"collapsed": true
257+
},
258+
"outputs": [],
259+
"source": []
260+
},
261+
{
262+
"cell_type": "code",
263+
"execution_count": null,
264+
"metadata": {
265+
"collapsed": true
266+
},
267+
"outputs": [],
268+
"source": []
269+
}
270+
],
271+
"metadata": {
272+
"kernelspec": {
273+
"display_name": "Python 3",
274+
"language": "python",
275+
"name": "python3"
276+
},
277+
"language_info": {
278+
"codemirror_mode": {
279+
"name": "ipython",
280+
"version": 3
281+
},
282+
"file_extension": ".py",
283+
"mimetype": "text/x-python",
284+
"name": "python",
285+
"nbconvert_exporter": "python",
286+
"pygments_lexer": "ipython3",
287+
"version": "3.6.7"
288+
}
289+
},
290+
"nbformat": 4,
291+
"nbformat_minor": 2
292+
}

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /