-
Notifications
You must be signed in to change notification settings - Fork 32
Open
@LukeMathWalker
Description
In terms of functionality, the mid-term end goal is to achieve feature parity with the statistics routine in numpy (here) and Julia StatsBase (here).
For the next version:
- Order statistics:
-
partialordversion forquantilesmethods;
-
- Histograms:
-
mergemethod;
-
For version 0.2.0:
- Order statistics:
- optimized computations of multiple quantiles if requested all at once (Bulk quantiles #26 ) ;
- argmin / argmax (Implement argmin argmax #30 );
- Summary statistics:
- harmonic mean (Means #20 );
- geometric mean (Means #20 );
- higher order central moments (Central moments #23 );
- standardized moments (they include kurtosis and skewness) (Central moments #23 );
- Histograms:
- Fix error handling (Issue: Reduce cases where histogram strategies panic #16 - PR: Histogram error handling #25 )
- Entropy:
- Feature parity with StatsBase.jl (Entropy #24 )
For version 0.1.0:
-
max/nanmax(@jturner314) -
min/nanmin(@jturner314) -
quantile/nanquantile(it includespercentile/nanpercentileas a special case) (@LukeMathWalker & @jturner314) -
correlation-methods:-
cov(@LukeMathWalker) -(削除) One last fix to be made (Remove 'static bound from type[On hold for now]AinCorrelationExt.cov#3 ) (削除ここまで) -
corrcoef(@LukeMathWalker - Pearson correlation #5 )
-
-
histogram-methods (@LukeMathWalker - Histogram (revisited) #9 )