|
165 | 165 |
|
166 | 166 | 3)计算变换矩阵: |
167 | 167 |
|
168 | | -$_{i-1}^{i}\textrm{T} = Rot(x_{i-1}, \alpha_{i-1}) \cdot Trans(x_{i-1},a_i) \cdot Rot(z_i, \theta_i) \cdot Trans(z_i, d_i)$ |
| 168 | +$$_{i-1}^{i}\textrm{T} = Rot(x_{i-1}, \alpha_{i-1}) \cdot Trans(x_{i-1},a_i) \cdot Rot(z_i, \theta_i) \cdot Trans(z_i, d_i)$$ |
169 | 169 |
|
170 | | -$_{i-1}^{i}\textrm{T} = \begin{bmatrix} cos(\theta_i) & -sin(\theta_i) & 0 & a_{i-1} \\ sin(\theta_i)cos(\alpha_{i-1}) & cos(\theta_i)cos(\alpha_{i-1}) & -sin(\alpha_{i-1}) & -d_i sin(\alpha_{i-1}) \\ sin(\theta_i)sin(\alpha_{i-1}) & cos(\theta_i)sin(\alpha_{i-1}) & cos(\alpha_{i-1}) & d_i cos(\alpha_{i-1}) \\ 0 & 0 & 0 & 1 \end{bmatrix}$ |
| 170 | +$$_{i-1}^{i}\textrm{T}=Rot(x_{i-1},\alpha_{i-1})\cdot{Trans(x_{i-1},a_i)}\cdot{Rot(z_i, \theta_i)}\cdot{Trans(z_i, d_i)}$$ |
| 171 | + |
| 172 | +$$_{i-1}^{i}\textrm{T} = \begin{bmatrix} cos(\theta_i) & -sin(\theta_i) & 0 & a_{i-1} \\ sin(\theta_i)cos(\alpha_{i-1}) & cos(\theta_i)cos(\alpha_{i-1}) & -sin(\alpha_{i-1}) & -d_i sin(\alpha_{i-1}) \\ sin(\theta_i)sin(\alpha_{i-1}) & cos(\theta_i)sin(\alpha_{i-1}) & cos(\alpha_{i-1}) & d_i cos(\alpha_{i-1}) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$ |
171 | 173 |
|
172 | 174 | 4)正解: |
173 | 175 |
|
174 | | -${^b_e}{T}={^b_1}T\cdot{^1_2}T\cdot{...}\cdot{^n_e}T$ |
| 176 | +$${^b_e}{T}={^b_1}T\cdot{^1_2}T\cdot{...}\cdot{^n_e}T$$ |
175 | 177 |
|
176 | 178 | 5)逆解: |
177 | 179 |
|
|
0 commit comments