|  | 
|  | 1 | +// Ques 6 - Subsets ( Backtracking Algorithm using Recursion ) | 
|  | 2 | +// Given an integer array nums of unique elements, return all possible subsets (the power set). | 
|  | 3 | +// The solution set must not contain duplicate subsets. Return the solution in any order. | 
|  | 4 | + | 
|  | 5 | +// Input: [1,2,3] ----->>>>> Output: [[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]] | 
|  | 6 | +// Input: [0] ----->>>>> Output: [[],[0]] | 
|  | 7 | + | 
|  | 8 | +function subsets(nums) { | 
|  | 9 | + let result = []; | 
|  | 10 | + let temp = []; | 
|  | 11 | + | 
|  | 12 | + function recursiveSubsets(nums, i) { | 
|  | 13 | + if (i === nums.length) { | 
|  | 14 | + return result.push([...temp]); | 
|  | 15 | + } | 
|  | 16 | + | 
|  | 17 | + temp.push(nums[i]); | 
|  | 18 | + recursiveSubsets(nums, i + 1); | 
|  | 19 | + temp.pop(); | 
|  | 20 | + recursiveSubsets(nums, i + 1); | 
|  | 21 | + } | 
|  | 22 | + | 
|  | 23 | + recursiveSubsets(nums, 0); | 
|  | 24 | + return result; | 
|  | 25 | +} | 
|  | 26 | + | 
|  | 27 | +console.log(subsets([1])); | 
0 commit comments