Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

import datasets, perform exploratory data analysis, scaling & different models such as linear or logistic regression, decision trees, random forests, K means, support vectors etc.

License

Notifications You must be signed in to change notification settings

nmathias0121/ml-model-algorithms

Folders and files

NameName
Last commit message
Last commit date

Latest commit

History

27 Commits

Repository files navigation

ml-model-algorithms

import datasets, perform exploratory data analysis, scaling & different models such as linear or logistic regression, decision trees, random forests, K means, support vectors etc.

Import Modules install module in system :
"pip3 install module-name"

Process Data
process_data.py contains the following functions :
get_file_names_in_dir(dir_name) : print name of files to process in directory
dataset_import(file_name, dataset_type) : import dataset & print description such as data size, rows, columns, unique and null values
dataset_EDA(data, pairplot_columns) : pairplot, heatmap
dataset_scrubbing(data, scrub_type, data_columns, fill_operation) : clean data by removing or filling missing values, deal with categorical variables using one hot encoding, remove entire columns
pre_model_algorithm(df, algorithm, target_column) : scale data using principle component analysis or k means clustering
def split_validation(dataset, features, target_column, test_split) : split train data into train & test including the target column with desired split ratio

Run Model
run_model.py contains the following models :
linear_regression(X_train, X_test, y_train, y_test, show_columns, target_column) : continuous predictions
logistic_regression(X_train, X_test, y_train, y_test, show_columns, target_column) : discrete predictions
decision_tree_classifier(X_train, X_test, y_train, y_test, show_columns, target_column) : both continuous & discrete predictions
random_forest_classifier(X_train, X_test, y_train, y_test, show_columns, target_column, num_estimators) : both continuous & discrete predictions
gradient_boosting(X_train, X_test, y_train, y_test, show_columns, target_column, gb_type) : regressor for continuous & classifier for discrete
k_neighbors_classifier(X_train, X_test, y_train, y_test, show_columns, target_column, k, scaled_features) : continuous, discrete, ordinal, categorical data predictions
support_vector_classifier(X_train, X_test, y_train, y_test, show_columns, target_column) : continuous data predictions

References

Releases

No releases published

Packages

No packages published

Languages

AltStyle によって変換されたページ (->オリジナル) /