Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 60a3446

Browse files
committed
Fixing markdown in README.
1 parent 4ebc201 commit 60a3446

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

‎README.md‎

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -71,14 +71,14 @@ Download or [clone](https://www.mathworks.com/help/matlab/matlab_prog/use-source
7171
## Example: Classify Text Data Using BERT
7272
The simplest use of a pretrained BERT model is to use it as a feature extractor. In particular, you can use the BERT model to convert documents to feature vectors which you can then use as inputs to train a deep learning classification network.
7373

74-
The example [`ClassifyTextDataUsingBERT.m`](./ClassifyTextDataUsingBERT.m) shows how to use a pretrained BERT model to classify failure events given a data set of factory reports. This example requires the `factoryReports.csv` data set from the Text Analytics example (Prepare Text Data for Analysis)[https://www.mathworks.com/help/textanalytics/ug/prepare-text-data-for-analysis.html].
74+
The example [`ClassifyTextDataUsingBERT.m`](./ClassifyTextDataUsingBERT.m) shows how to use a pretrained BERT model to classify failure events given a data set of factory reports. This example requires the `factoryReports.csv` data set from the Text Analytics example [Prepare Text Data for Analysis](https://www.mathworks.com/help/textanalytics/ug/prepare-text-data-for-analysis.html).
7575

7676
## Example: Fine-Tune Pretrained BERT Model
7777
To get the most out of a pretrained BERT model, you can retrain and fine tune the BERT parameters weights for your task.
7878

79-
The example [`FineTuneBERT.m`](./FineTuneBERT.m) shows how to fine-tune a pretrained BERT model to classify failure events given a data set of factory reports. This example requires the `factoryReports.csv` data set from the Text Analytics example (Prepare Text Data for Analysis)[https://www.mathworks.com/help/textanalytics/ug/prepare-text-data-for-analysis.html].
79+
The example [`FineTuneBERT.m`](./FineTuneBERT.m) shows how to fine-tune a pretrained BERT model to classify failure events given a data set of factory reports. This example requires the `factoryReports.csv` data set from the Text Analytics example [Prepare Text Data for Analysis](https://www.mathworks.com/help/textanalytics/ug/prepare-text-data-for-analysis.html).
8080

81-
The example [`FineTuneBERTJapanese.m`](./FineTuneBERTJapanese.m) shows the same workflow using a pretrained Japanese-BERT model. This example requires the `factoryReportsJP.csv` data set from the Text Analytics example (Analyze Japanese Text Data)[https://www.mathworks.com/help/textanalytics/ug/analyze-japanese-text.html], available in R2023a or later.
81+
The example [`FineTuneBERTJapanese.m`](./FineTuneBERTJapanese.m) shows the same workflow using a pretrained Japanese-BERT model. This example requires the `factoryReportsJP.csv` data set from the Text Analytics example [Analyze Japanese Text Data](https://www.mathworks.com/help/textanalytics/ug/analyze-japanese-text.html), available in R2023a or later.
8282

8383
## Example: Analyze Sentiment with FinBERT
8484
FinBERT is a sentiment analysis model trained on financial text data and fine-tuned for sentiment analysis.

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /