You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -96,7 +96,7 @@ In general, residual analysis can be characterized as a careful study of when an
96
96
97
97

98
98
99
-
This notebook uses the same credit card default scenario to show how monotonicity constraints, Shapley values and other post-hoc explanations, and discrimination testing can enable practitioners to create direct comparisons between GLM and GBM models. Several candidate probability of default models are selected for comparison using forward feature selection methods, like LASSO, and by cross-validated ranking. Comparisons then enable building from GLM to more complex GBM models in a step-by-step manner, while retaining model transparency and the ability to test for discrimination. This notebook shows that a GBMs can yield better accuracy, more revenue, and that GBM is also likely to fulfill model documentation, adverse action notice, and discrimination testing requirements.
99
+
This notebook uses the same credit card default scenario to show how monotonicity constraints, Shapley values and other post-hoc explanations, and discrimination testing can enable practitioners to create direct comparisons between GLM and GBM models. Several candidate probability of default models are selected for comparison using feature selection methods, like LASSO, and by cross-validated ranking. Comparisons then enable building from GLM to more complex GBM models in a step-by-step manner, while retaining model transparency and the ability to test for discrimination. This notebook shows that GBMs can yield better accuracy, more revenue, and that GBM is also likely to fulfill many model documentation, adverse action notice, and discrimination testing requirements.
0 commit comments