Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit d2072ce

Browse files
Minor fixes
1 parent ff6a710 commit d2072ce

File tree

1 file changed

+36
-29
lines changed

1 file changed

+36
-29
lines changed

‎12141666_12166804_lab1.ipynb‎

Lines changed: 36 additions & 29 deletions
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,9 @@
2121
{
2222
"cell_type": "code",
2323
"execution_count": null,
24-
"metadata": {},
24+
"metadata": {
25+
"collapsed": true
26+
},
2527
"outputs": [],
2628
"source": [
2729
"NAME = \"IOANNIS GATOPOULOS\"\n",
@@ -63,6 +65,7 @@
6365
"cell_type": "code",
6466
"execution_count": null,
6567
"metadata": {
68+
"collapsed": false,
6669
"deletable": false,
6770
"editable": false,
6871
"nbgrader": {
@@ -84,6 +87,7 @@
8487
"cell_type": "code",
8588
"execution_count": null,
8689
"metadata": {
90+
"collapsed": true,
8791
"deletable": false,
8892
"editable": false,
8993
"nbgrader": {
@@ -217,6 +221,7 @@
217221
"cell_type": "code",
218222
"execution_count": null,
219223
"metadata": {
224+
"collapsed": true,
220225
"deletable": false,
221226
"nbgrader": {
222227
"checksum": "49937550875b0f9110c39ecfeca2e48e",
@@ -241,6 +246,7 @@
241246
"cell_type": "code",
242247
"execution_count": null,
243248
"metadata": {
249+
"collapsed": true,
244250
"deletable": false,
245251
"editable": false,
246252
"nbgrader": {
@@ -293,6 +299,7 @@
293299
"cell_type": "code",
294300
"execution_count": null,
295301
"metadata": {
302+
"collapsed": true,
296303
"deletable": false,
297304
"nbgrader": {
298305
"checksum": "e5f21a1de6f35ff5c520db69540d71c7",
@@ -325,6 +332,7 @@
325332
"cell_type": "code",
326333
"execution_count": null,
327334
"metadata": {
335+
"collapsed": true,
328336
"deletable": false,
329337
"editable": false,
330338
"nbgrader": {
@@ -375,6 +383,7 @@
375383
"cell_type": "code",
376384
"execution_count": null,
377385
"metadata": {
386+
"collapsed": false,
378387
"deletable": false,
379388
"nbgrader": {
380389
"checksum": "0009313fff1f2cd716d4e81f0f2ec5ff",
@@ -436,6 +445,7 @@
436445
"cell_type": "code",
437446
"execution_count": null,
438447
"metadata": {
448+
"collapsed": true,
439449
"deletable": false,
440450
"nbgrader": {
441451
"checksum": "dc76736fba956e5d9cc51a318c2507c3",
@@ -455,27 +465,11 @@
455465
" return w_ml, Phi"
456466
]
457467
},
458-
{
459-
"cell_type": "code",
460-
"execution_count": null,
461-
"metadata": {},
462-
"outputs": [],
463-
"source": [
464-
"# for m in range(0, 9, 2):\n",
465-
"# w, Phi = fit_polynomial_reg(x, t, m, lamb=0.1)\n",
466-
"# y = predict(w, x_test)\n",
467-
"# plt.subplot(2, 3, m/2 + 1)\n",
468-
"# plt.plot(x_test, np.sin(x_test), 'g', label='sin(x)')\n",
469-
"# plt.scatter(x, t, c='b', label='Data point')\n",
470-
"# plt.plot(x_test, y, 'r', label='Regression polyomial')\n",
471-
"# plt.title(\"Regularized regression with polynomial of order %s\" %m)\n",
472-
"# plt.legend()"
473-
]
474-
},
475468
{
476469
"cell_type": "code",
477470
"execution_count": null,
478471
"metadata": {
472+
"collapsed": true,
479473
"deletable": false,
480474
"editable": false,
481475
"nbgrader": {
@@ -526,7 +520,9 @@
526520
{
527521
"cell_type": "code",
528522
"execution_count": null,
529-
"metadata": {},
523+
"metadata": {
524+
"collapsed": false
525+
},
530526
"outputs": [],
531527
"source": [
532528
"m = 8\n",
@@ -543,7 +539,7 @@
543539
"x_test = np.linspace(0, 2 * np.pi, 1000)\n",
544540
"plt.scatter(x_train, t_train, c = 'b', label = 'Data points')\n",
545541
"plt.plot(x_test, predict(w, x_test), 'g', label = 'Unregularized regression of order %d' %m)\n",
546-
"plt.plot(x_test, predict(w_reg, x_test), 'r', label = 'Regularized regression of order %d with lamda = %.1f' %(m, lamb))\n",
542+
"plt.plot(x_test, predict(w_reg, x_test), 'r', label = 'Regularized regression of order %d with lambda = %.1f' %(m, lamb))\n",
547543
"plt.legend()"
548544
]
549545
},
@@ -597,6 +593,7 @@
597593
"cell_type": "code",
598594
"execution_count": null,
599595
"metadata": {
596+
"collapsed": true,
600597
"deletable": false,
601598
"nbgrader": {
602599
"checksum": "2cfb7f4cc04e4af74f4655e772e33b09",
@@ -620,6 +617,7 @@
620617
"cell_type": "code",
621618
"execution_count": null,
622619
"metadata": {
620+
"collapsed": true,
623621
"deletable": false,
624622
"editable": false,
625623
"nbgrader": {
@@ -668,6 +666,7 @@
668666
"cell_type": "code",
669667
"execution_count": null,
670668
"metadata": {
669+
"collapsed": true,
671670
"deletable": false,
672671
"editable": false,
673672
"nbgrader": {
@@ -698,6 +697,7 @@
698697
"cell_type": "code",
699698
"execution_count": null,
700699
"metadata": {
700+
"collapsed": true,
701701
"deletable": false,
702702
"nbgrader": {
703703
"checksum": "65930a94ed4b46300fcf5aef054662a0",
@@ -739,6 +739,7 @@
739739
"cell_type": "code",
740740
"execution_count": null,
741741
"metadata": {
742+
"collapsed": true,
742743
"deletable": false,
743744
"editable": false,
744745
"nbgrader": {
@@ -759,7 +760,10 @@
759760
{
760761
"cell_type": "code",
761762
"execution_count": null,
762-
"metadata": {},
763+
"metadata": {
764+
"collapsed": false,
765+
"scrolled": true
766+
},
763767
"outputs": [],
764768
"source": [
765769
"x = np.random.uniform(0, 5, 20)\n",
@@ -879,6 +883,7 @@
879883
"cell_type": "code",
880884
"execution_count": null,
881885
"metadata": {
886+
"collapsed": false,
882887
"deletable": false,
883888
"nbgrader": {
884889
"checksum": "9600d75426aa084eff763220c868f3da",
@@ -937,6 +942,7 @@
937942
"cell_type": "code",
938943
"execution_count": null,
939944
"metadata": {
945+
"collapsed": true,
940946
"deletable": false,
941947
"nbgrader": {
942948
"checksum": "734894a81470d4d49711de0c90998d3e",
@@ -961,6 +967,7 @@
961967
"cell_type": "code",
962968
"execution_count": null,
963969
"metadata": {
970+
"collapsed": true,
964971
"deletable": false,
965972
"editable": false,
966973
"nbgrader": {
@@ -1021,6 +1028,7 @@
10211028
"cell_type": "code",
10221029
"execution_count": null,
10231030
"metadata": {
1031+
"collapsed": true,
10241032
"deletable": false,
10251033
"nbgrader": {
10261034
"checksum": "a945f997e9dec6b173c23a922ef773b3",
@@ -1044,6 +1052,7 @@
10441052
"cell_type": "code",
10451053
"execution_count": null,
10461054
"metadata": {
1055+
"collapsed": true,
10471056
"deletable": false,
10481057
"editable": false,
10491058
"nbgrader": {
@@ -1105,6 +1114,7 @@
11051114
"cell_type": "code",
11061115
"execution_count": null,
11071116
"metadata": {
1117+
"collapsed": true,
11081118
"deletable": false,
11091119
"nbgrader": {
11101120
"checksum": "45fb4bc1bc26e2e2865d96eee138c9db",
@@ -1130,6 +1140,7 @@
11301140
"cell_type": "code",
11311141
"execution_count": null,
11321142
"metadata": {
1143+
"collapsed": true,
11331144
"deletable": false,
11341145
"editable": false,
11351146
"nbgrader": {
@@ -1186,6 +1197,7 @@
11861197
"cell_type": "code",
11871198
"execution_count": null,
11881199
"metadata": {
1200+
"collapsed": false,
11891201
"deletable": false,
11901202
"nbgrader": {
11911203
"checksum": "4afe3760f68ff7c6b06f18b8e60c71a6",
@@ -1214,7 +1226,7 @@
12141226
"plt.scatter(x_train, t_train, c = 'blue', label = 'Data point')\n",
12151227
"plt.plot(x_test, np.sin(x_test), 'green', label = 'sin(x)')\n",
12161228
"plt.fill_between(x_test, mean + sigma, mean - sigma, color = 'red', alpha = '0.1')\n",
1217-
"plt.fill(np.NaN, np.NaN, 'red', alpha = 0.1, label = 'One std. dev. of predictive distribution')\n",
1229+
"plt.fill(np.NaN, np.NaN, 'red', alpha = 0.1, label = 'Std. dev. of predictive distribution')\n",
12181230
"plt.title(\"Plot of the predictive distribution\")\n",
12191231
"plt.legend()"
12201232
]
@@ -1242,6 +1254,7 @@
12421254
"cell_type": "code",
12431255
"execution_count": null,
12441256
"metadata": {
1257+
"collapsed": false,
12451258
"deletable": false,
12461259
"nbgrader": {
12471260
"checksum": "a6cbc9e5b0de9f7f9c847b1209275748",
@@ -1337,16 +1350,10 @@
13371350
"source": [
13381351
"It is generally difficult to find the appropriate basis functions that transform the input data so that linear regression on it gives good results. This often requires extensive domain knowledge of the problem to be solved and involves handcrafting the basis functions. Moreover, the number of required basis functions increases exponentially with the dimension of the input data."
13391352
]
1340-
},
1341-
{
1342-
"cell_type": "code",
1343-
"execution_count": null,
1344-
"metadata": {},
1345-
"outputs": [],
1346-
"source": []
13471353
}
13481354
],
13491355
"metadata": {
1356+
"anaconda-cloud": {},
13501357
"kernelspec": {
13511358
"display_name": "Python [conda env:ml1labs]",
13521359
"language": "python",

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /