|
21 | 21 | { |
22 | 22 | "cell_type": "code", |
23 | 23 | "execution_count": null, |
24 | | - "metadata": {}, |
| 24 | + "metadata": { |
| 25 | + "collapsed": true |
| 26 | + }, |
25 | 27 | "outputs": [], |
26 | 28 | "source": [ |
27 | 29 | "NAME = \"IOANNIS GATOPOULOS\"\n", |
|
63 | 65 | "cell_type": "code", |
64 | 66 | "execution_count": null, |
65 | 67 | "metadata": { |
| 68 | + "collapsed": false, |
66 | 69 | "deletable": false, |
67 | 70 | "editable": false, |
68 | 71 | "nbgrader": { |
|
84 | 87 | "cell_type": "code", |
85 | 88 | "execution_count": null, |
86 | 89 | "metadata": { |
| 90 | + "collapsed": true, |
87 | 91 | "deletable": false, |
88 | 92 | "editable": false, |
89 | 93 | "nbgrader": { |
|
217 | 221 | "cell_type": "code", |
218 | 222 | "execution_count": null, |
219 | 223 | "metadata": { |
| 224 | + "collapsed": true, |
220 | 225 | "deletable": false, |
221 | 226 | "nbgrader": { |
222 | 227 | "checksum": "49937550875b0f9110c39ecfeca2e48e", |
|
241 | 246 | "cell_type": "code", |
242 | 247 | "execution_count": null, |
243 | 248 | "metadata": { |
| 249 | + "collapsed": true, |
244 | 250 | "deletable": false, |
245 | 251 | "editable": false, |
246 | 252 | "nbgrader": { |
|
293 | 299 | "cell_type": "code", |
294 | 300 | "execution_count": null, |
295 | 301 | "metadata": { |
| 302 | + "collapsed": true, |
296 | 303 | "deletable": false, |
297 | 304 | "nbgrader": { |
298 | 305 | "checksum": "e5f21a1de6f35ff5c520db69540d71c7", |
|
325 | 332 | "cell_type": "code", |
326 | 333 | "execution_count": null, |
327 | 334 | "metadata": { |
| 335 | + "collapsed": true, |
328 | 336 | "deletable": false, |
329 | 337 | "editable": false, |
330 | 338 | "nbgrader": { |
|
375 | 383 | "cell_type": "code", |
376 | 384 | "execution_count": null, |
377 | 385 | "metadata": { |
| 386 | + "collapsed": false, |
378 | 387 | "deletable": false, |
379 | 388 | "nbgrader": { |
380 | 389 | "checksum": "0009313fff1f2cd716d4e81f0f2ec5ff", |
|
436 | 445 | "cell_type": "code", |
437 | 446 | "execution_count": null, |
438 | 447 | "metadata": { |
| 448 | + "collapsed": true, |
439 | 449 | "deletable": false, |
440 | 450 | "nbgrader": { |
441 | 451 | "checksum": "dc76736fba956e5d9cc51a318c2507c3", |
|
455 | 465 | " return w_ml, Phi" |
456 | 466 | ] |
457 | 467 | }, |
458 | | - { |
459 | | - "cell_type": "code", |
460 | | - "execution_count": null, |
461 | | - "metadata": {}, |
462 | | - "outputs": [], |
463 | | - "source": [ |
464 | | - "# for m in range(0, 9, 2):\n", |
465 | | - "# w, Phi = fit_polynomial_reg(x, t, m, lamb=0.1)\n", |
466 | | - "# y = predict(w, x_test)\n", |
467 | | - "# plt.subplot(2, 3, m/2 + 1)\n", |
468 | | - "# plt.plot(x_test, np.sin(x_test), 'g', label='sin(x)')\n", |
469 | | - "# plt.scatter(x, t, c='b', label='Data point')\n", |
470 | | - "# plt.plot(x_test, y, 'r', label='Regression polyomial')\n", |
471 | | - "# plt.title(\"Regularized regression with polynomial of order %s\" %m)\n", |
472 | | - "# plt.legend()" |
473 | | - ] |
474 | | - }, |
475 | 468 | { |
476 | 469 | "cell_type": "code", |
477 | 470 | "execution_count": null, |
478 | 471 | "metadata": { |
| 472 | + "collapsed": true, |
479 | 473 | "deletable": false, |
480 | 474 | "editable": false, |
481 | 475 | "nbgrader": { |
|
526 | 520 | { |
527 | 521 | "cell_type": "code", |
528 | 522 | "execution_count": null, |
529 | | - "metadata": {}, |
| 523 | + "metadata": { |
| 524 | + "collapsed": false |
| 525 | + }, |
530 | 526 | "outputs": [], |
531 | 527 | "source": [ |
532 | 528 | "m = 8\n", |
|
543 | 539 | "x_test = np.linspace(0, 2 * np.pi, 1000)\n", |
544 | 540 | "plt.scatter(x_train, t_train, c = 'b', label = 'Data points')\n", |
545 | 541 | "plt.plot(x_test, predict(w, x_test), 'g', label = 'Unregularized regression of order %d' %m)\n", |
546 | | - "plt.plot(x_test, predict(w_reg, x_test), 'r', label = 'Regularized regression of order %d with lamda = %.1f' %(m, lamb))\n", |
| 542 | + "plt.plot(x_test, predict(w_reg, x_test), 'r', label = 'Regularized regression of order %d with lambda = %.1f' %(m, lamb))\n", |
547 | 543 | "plt.legend()" |
548 | 544 | ] |
549 | 545 | }, |
|
597 | 593 | "cell_type": "code", |
598 | 594 | "execution_count": null, |
599 | 595 | "metadata": { |
| 596 | + "collapsed": true, |
600 | 597 | "deletable": false, |
601 | 598 | "nbgrader": { |
602 | 599 | "checksum": "2cfb7f4cc04e4af74f4655e772e33b09", |
|
620 | 617 | "cell_type": "code", |
621 | 618 | "execution_count": null, |
622 | 619 | "metadata": { |
| 620 | + "collapsed": true, |
623 | 621 | "deletable": false, |
624 | 622 | "editable": false, |
625 | 623 | "nbgrader": { |
|
668 | 666 | "cell_type": "code", |
669 | 667 | "execution_count": null, |
670 | 668 | "metadata": { |
| 669 | + "collapsed": true, |
671 | 670 | "deletable": false, |
672 | 671 | "editable": false, |
673 | 672 | "nbgrader": { |
|
698 | 697 | "cell_type": "code", |
699 | 698 | "execution_count": null, |
700 | 699 | "metadata": { |
| 700 | + "collapsed": true, |
701 | 701 | "deletable": false, |
702 | 702 | "nbgrader": { |
703 | 703 | "checksum": "65930a94ed4b46300fcf5aef054662a0", |
|
739 | 739 | "cell_type": "code", |
740 | 740 | "execution_count": null, |
741 | 741 | "metadata": { |
| 742 | + "collapsed": true, |
742 | 743 | "deletable": false, |
743 | 744 | "editable": false, |
744 | 745 | "nbgrader": { |
|
759 | 760 | { |
760 | 761 | "cell_type": "code", |
761 | 762 | "execution_count": null, |
762 | | - "metadata": {}, |
| 763 | + "metadata": { |
| 764 | + "collapsed": false, |
| 765 | + "scrolled": true |
| 766 | + }, |
763 | 767 | "outputs": [], |
764 | 768 | "source": [ |
765 | 769 | "x = np.random.uniform(0, 5, 20)\n", |
|
879 | 883 | "cell_type": "code", |
880 | 884 | "execution_count": null, |
881 | 885 | "metadata": { |
| 886 | + "collapsed": false, |
882 | 887 | "deletable": false, |
883 | 888 | "nbgrader": { |
884 | 889 | "checksum": "9600d75426aa084eff763220c868f3da", |
|
937 | 942 | "cell_type": "code", |
938 | 943 | "execution_count": null, |
939 | 944 | "metadata": { |
| 945 | + "collapsed": true, |
940 | 946 | "deletable": false, |
941 | 947 | "nbgrader": { |
942 | 948 | "checksum": "734894a81470d4d49711de0c90998d3e", |
|
961 | 967 | "cell_type": "code", |
962 | 968 | "execution_count": null, |
963 | 969 | "metadata": { |
| 970 | + "collapsed": true, |
964 | 971 | "deletable": false, |
965 | 972 | "editable": false, |
966 | 973 | "nbgrader": { |
|
1021 | 1028 | "cell_type": "code", |
1022 | 1029 | "execution_count": null, |
1023 | 1030 | "metadata": { |
| 1031 | + "collapsed": true, |
1024 | 1032 | "deletable": false, |
1025 | 1033 | "nbgrader": { |
1026 | 1034 | "checksum": "a945f997e9dec6b173c23a922ef773b3", |
|
1044 | 1052 | "cell_type": "code", |
1045 | 1053 | "execution_count": null, |
1046 | 1054 | "metadata": { |
| 1055 | + "collapsed": true, |
1047 | 1056 | "deletable": false, |
1048 | 1057 | "editable": false, |
1049 | 1058 | "nbgrader": { |
|
1105 | 1114 | "cell_type": "code", |
1106 | 1115 | "execution_count": null, |
1107 | 1116 | "metadata": { |
| 1117 | + "collapsed": true, |
1108 | 1118 | "deletable": false, |
1109 | 1119 | "nbgrader": { |
1110 | 1120 | "checksum": "45fb4bc1bc26e2e2865d96eee138c9db", |
|
1130 | 1140 | "cell_type": "code", |
1131 | 1141 | "execution_count": null, |
1132 | 1142 | "metadata": { |
| 1143 | + "collapsed": true, |
1133 | 1144 | "deletable": false, |
1134 | 1145 | "editable": false, |
1135 | 1146 | "nbgrader": { |
|
1186 | 1197 | "cell_type": "code", |
1187 | 1198 | "execution_count": null, |
1188 | 1199 | "metadata": { |
| 1200 | + "collapsed": false, |
1189 | 1201 | "deletable": false, |
1190 | 1202 | "nbgrader": { |
1191 | 1203 | "checksum": "4afe3760f68ff7c6b06f18b8e60c71a6", |
|
1214 | 1226 | "plt.scatter(x_train, t_train, c = 'blue', label = 'Data point')\n", |
1215 | 1227 | "plt.plot(x_test, np.sin(x_test), 'green', label = 'sin(x)')\n", |
1216 | 1228 | "plt.fill_between(x_test, mean + sigma, mean - sigma, color = 'red', alpha = '0.1')\n", |
1217 | | - "plt.fill(np.NaN, np.NaN, 'red', alpha = 0.1, label = 'One std. dev. of predictive distribution')\n", |
| 1229 | + "plt.fill(np.NaN, np.NaN, 'red', alpha = 0.1, label = 'Std. dev. of predictive distribution')\n", |
1218 | 1230 | "plt.title(\"Plot of the predictive distribution\")\n", |
1219 | 1231 | "plt.legend()" |
1220 | 1232 | ] |
|
1242 | 1254 | "cell_type": "code", |
1243 | 1255 | "execution_count": null, |
1244 | 1256 | "metadata": { |
| 1257 | + "collapsed": false, |
1245 | 1258 | "deletable": false, |
1246 | 1259 | "nbgrader": { |
1247 | 1260 | "checksum": "a6cbc9e5b0de9f7f9c847b1209275748", |
|
1337 | 1350 | "source": [ |
1338 | 1351 | "It is generally difficult to find the appropriate basis functions that transform the input data so that linear regression on it gives good results. This often requires extensive domain knowledge of the problem to be solved and involves handcrafting the basis functions. Moreover, the number of required basis functions increases exponentially with the dimension of the input data." |
1339 | 1352 | ] |
1340 | | - }, |
1341 | | - { |
1342 | | - "cell_type": "code", |
1343 | | - "execution_count": null, |
1344 | | - "metadata": {}, |
1345 | | - "outputs": [], |
1346 | | - "source": [] |
1347 | 1353 | } |
1348 | 1354 | ], |
1349 | 1355 | "metadata": { |
| 1356 | + "anaconda-cloud": {}, |
1350 | 1357 | "kernelspec": { |
1351 | 1358 | "display_name": "Python [conda env:ml1labs]", |
1352 | 1359 | "language": "python", |
|
0 commit comments