Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Wan2.2 i2v Latest Lightning LoRA not loading #12535

Closed
Labels
bugSomething isn't working
@ljk1291

Description

Describe the bug

The latest lightning LoRA for Wan2.2 i2v fails to load.
Link to LoRA: Latest

Reproduction

model_id = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
pipe = WanImageToVideoPipeline.from_pretrained(
 model_id,
 torch_dtype=torch.bfloat16
)
lightning_hn = hf_hub_download(repo_id="lightx2v/Wan2.2-Distill-Loras", filename="wan2.2_i2v_A14b_high_noise_lora_rank64_lightx2v_4step_1022.safetensors")
lightning_ln = hf_hub_download(repo_id="lightx2v/Wan2.2-Distill-Loras", filename="wan2.2_i2v_A14b_low_noise_lora_rank64_lightx2v_4step_1022.safetensors")
pipe.load_lora_weights(
 lightning_hn,
 adapter_name="lightning"
)
pipe.load_lora_weights(
 lightning_ln,
 adapter_name="lightning_2"
)

Logs

KeyError Traceback (most recent call last)
Cell In[5], line 31
 28 lightning_hn = hf_hub_download(repo_id="lightx2v/Wan2.2-Distill-Loras", filename="wan2.2_i2v_A14b_high_noise_lora_rank64_lightx2v_4step_1022.safetensors")
 29 lightning_ln = hf_hub_download(repo_id="lightx2v/Wan2.2-Distill-Loras", filename="wan2.2_i2v_A14b_low_noise_lora_rank64_lightx2v_4step_1022.safetensors")
---> 31 pipe.load_lora_weights(
 32 lightning_hn,
 33 adapter_name="lightning"
 34 )
 36 pipe.load_lora_weights(
 37 lightning_ln,
 38 adapter_name="lightning_2"
 39 )
 41 pipe.transformer.load_lora_adapter(load_wan_lora(lightning_hn), adapter_name="high_noise")
File /usr/local/lib/python3.11/dist-packages/diffusers/loaders/lora_pipeline.py:4066, in WanLoraLoaderMixin.load_lora_weights(self, pretrained_model_name_or_path_or_dict, adapter_name, hotswap, **kwargs)
 4064 # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
 4065 kwargs["return_lora_metadata"] = True
-> 4066 state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
 4067 # convert T2V LoRA to I2V LoRA (when loaded to Wan I2V) by adding zeros for the additional (missing) _img layers
 4068 state_dict = self._maybe_expand_t2v_lora_for_i2v(
 4069 transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
 4070 state_dict=state_dict,
 4071 )
File /usr/local/lib/python3.11/dist-packages/huggingface_hub/utils/_validators.py:114, in validate_hf_hub_args.<locals>._inner_fn(*args, **kwargs)
 111 if check_use_auth_token:
 112 kwargs = smoothly_deprecate_use_auth_token(fn_name=fn.__name__, has_token=has_token, kwargs=kwargs)
--> 114 return fn(*args, **kwargs)
File /usr/local/lib/python3.11/dist-packages/diffusers/loaders/lora_pipeline.py:3980, in WanLoraLoaderMixin.lora_state_dict(cls, pretrained_model_name_or_path_or_dict, **kwargs)
 3965 state_dict, metadata = _fetch_state_dict(
 3966 pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
 3967 weight_name=weight_name,
 (...)
 3977 allow_pickle=allow_pickle,
 3978 )
 3979 if any(k.startswith("diffusion_model.") for k in state_dict):
-> 3980 state_dict = _convert_non_diffusers_wan_lora_to_diffusers(state_dict)
 3981 elif any(k.startswith("lora_unet_") for k in state_dict):
 3982 state_dict = _convert_musubi_wan_lora_to_diffusers(state_dict)
File /usr/local/lib/python3.11/dist-packages/diffusers/loaders/lora_conversion_utils.py:1981, in _convert_non_diffusers_wan_lora_to_diffusers(state_dict)
 1976 converted_state_dict["condition_embedder.time_proj.lora_B.bias"] = original_state_dict.pop(
 1977 "time_projection.1.diff_b"
 1978 )
 1980 if any("head.head" in k for k in state_dict):
-> 1981 converted_state_dict["proj_out.lora_A.weight"] = original_state_dict.pop(
 1982 f"head.head.{lora_down_key}.weight"
 1983 )
 1984 converted_state_dict["proj_out.lora_B.weight"] = original_state_dict.pop(f"head.head.{lora_up_key}.weight")
 1985 if "head.head.diff_b" in original_state_dict:
KeyError: 'head.head.lora_down.weight'

System Info

  • 🤗 Diffusers version: 0.36.0.dev0
  • Platform: Linux-6.5.0-27-generic-x86_64-with-glibc2.35
  • Running on Google Colab?: No
  • Python version: 3.11.10
  • PyTorch version (GPU?): 2.6.0+cu124 (True)
  • Flax version (CPU?/GPU?/TPU?): not installed (NA)
  • Jax version: not installed
  • JaxLib version: not installed
  • Huggingface_hub version: 0.35.3
  • Transformers version: 4.57.1
  • Accelerate version: 1.11.0
  • PEFT version: 0.17.1
  • Bitsandbytes version: not installed
  • Safetensors version: 0.6.2
  • xFormers version: not installed
  • Accelerator: NVIDIA H100 80GB HBM3, 81559 MiB
  • Using GPU in script?: No
  • Using distributed or parallel set-up in script?: No

Who can help?

@sayakpaul @a-r-r-o-w

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

      Relationships

      None yet

      Development

      No branches or pull requests

      Issue actions

        AltStyle によって変換されたページ (->オリジナル) /