|  | 
|  | 1 | +/** | 
|  | 2 | + * Title: Number of Restricted Paths from First to Last Node | 
|  | 3 | + * Description: There is an undirected weighted connected graph. You are given a positive integer n which denotes that the graph has n nodes labeled from 1 to n, and an array edges where each edges[i] = [ui, vi, weighti] denotes that there is an edge between nodes ui and vi with weight equal to weighti. | 
|  | 4 | + * Author: Hasibul Islam | 
|  | 5 | + * Date: 04/05/2023 | 
|  | 6 | + */ | 
|  | 7 | + | 
|  | 8 | +/** | 
|  | 9 | + * @param {number} n | 
|  | 10 | + * @param {number[][]} edges | 
|  | 11 | + * @return {number} | 
|  | 12 | + */ | 
|  | 13 | +var countRestrictedPaths = function (n, edges) { | 
|  | 14 | + const g = Array.from({ length: n + 1 }, () => []); | 
|  | 15 | + for (let [a, b, c] of edges) { | 
|  | 16 | + g[a].push([b, c]); | 
|  | 17 | + g[b].push([a, c]); | 
|  | 18 | + } | 
|  | 19 | + // do dijkstras to find shortest path from n to all nodes | 
|  | 20 | + const dis = new Array(n + 1).fill(Infinity); | 
|  | 21 | + dis[n] = 0; | 
|  | 22 | + const dijkstra = () => { | 
|  | 23 | + const heap = new MinPriorityQueue({ priority: (x) => x[1] }); | 
|  | 24 | + heap.enqueue([n, 0]); | 
|  | 25 | + while (heap.size()) { | 
|  | 26 | + const [node, cost] = heap.dequeue().element; | 
|  | 27 | + for (let [nextNode, w] of g[node]) { | 
|  | 28 | + const totalCost = cost + w; | 
|  | 29 | + if (dis[nextNode] > totalCost) { | 
|  | 30 | + dis[nextNode] = totalCost; | 
|  | 31 | + heap.enqueue([nextNode, totalCost]); | 
|  | 32 | + } | 
|  | 33 | + } | 
|  | 34 | + } | 
|  | 35 | + }; | 
|  | 36 | + dijkstra(); | 
|  | 37 | + | 
|  | 38 | + // do dfs from 1 having path always lesser dist | 
|  | 39 | + let rPaths = 0; | 
|  | 40 | + const MOD = 1000000007; | 
|  | 41 | + const dp = new Array(n + 1).fill(-1); | 
|  | 42 | + const dfs = (curr = 1, rCost = dis[1]) => { | 
|  | 43 | + if (curr == n) return 1; | 
|  | 44 | + if (dp[curr] != -1) return dp[curr]; | 
|  | 45 | + | 
|  | 46 | + let op = 0; | 
|  | 47 | + for (let [n, w] of g[curr]) { | 
|  | 48 | + if (dis[n] < rCost) { | 
|  | 49 | + op = (op + dfs(n, dis[n])) % MOD; | 
|  | 50 | + } | 
|  | 51 | + } | 
|  | 52 | + | 
|  | 53 | + return (dp[curr] = op); | 
|  | 54 | + }; | 
|  | 55 | + return dfs(); | 
|  | 56 | +}; | 
0 commit comments