@@ -188,10 +188,6 @@ const trainLogisticRegression = async (featureCount, trainDs, validDs) => {
188188} ;
189189
190190const trainComplexModel = async ( featureCount , trainDs , validDs ) => {
191- // const arr = await ds.take(10).toArray();
192- 193- // console.log(arr[0].xs.arraySync());
194- 195191 const model = tf . sequential ( ) ;
196192 model . add (
197193 tf . layers . dense ( {
@@ -233,50 +229,37 @@ const trainComplexModel = async (featureCount, trainDs, validDs) => {
233229
234230const run = async ( ) => {
235231 const data = await prepareData ( ) ;
236- // console.log(data[0]);
237- 238- // renderOutcomes(data);
239- 240- // renderHistogram("insulin-cont", data, "Insulin", {
241- // title: "Insulin levels",
242- // xLabel: "Insulin 2-hour serum, mu U/ml"
243- // });
244- 245- // renderHistogram("glucose-cont", data, "Glucose", {
246- // title: "Glucose concentration",
247- // xLabel: "Plasma glucose concentration (2 hour after glucose tolerance test)"
248- // });
249- 250- // renderHistogram("age-cont", data, "Age", {
251- // title: "Age",
252- // xLabel: "age (years)"
253- // });
254- 255- // renderScatter("glucose-age-cont", data, ["Glucose", "Age"], {
256- // title: "Glucose vs Age",
257- // xLabel: "Glucose",
258- // yLabel: "Age"
259- // });
260- 261- // renderScatter("skin-bmi-cont", data, ["SkinThickness", "BMI"], {
262- // title: "Skin thickness vs BMI",
263- // xLabel: "Skin thickness",
264- // yLabel: "BMI"
265- // });
266- 267- // const [xTrain, xTest, yTrain, yTest] = toTensors(
268- // data,
269- // ["Glucose", "Age", "BMI"],
270- // 0.1
271- // );
272232
273- // const features = ["Glucose"];
233+ renderOutcomes ( data ) ;
234+ 235+ renderHistogram ( "insulin-cont" , data , "Insulin" , {
236+ title : "Insulin levels" ,
237+ xLabel : "Insulin 2-hour serum, mu U/ml"
238+ } ) ;
239+ 240+ renderHistogram ( "glucose-cont" , data , "Glucose" , {
241+ title : "Glucose concentration" ,
242+ xLabel : "Plasma glucose concentration (2 hour after glucose tolerance test)"
243+ } ) ;
244+ 245+ renderHistogram ( "age-cont" , data , "Age" , {
246+ title : "Age" ,
247+ xLabel : "age (years)"
248+ } ) ;
274249
275- // const [trainDs, validDs] = createDataSets(data, features, 0.1, 16);
250+ renderScatter ( "glucose-age-cont" , data , [ "Glucose" , "Age" ] , {
251+ title : "Glucose vs Age" ,
252+ xLabel : "Glucose" ,
253+ yLabel : "Age"
254+ } ) ;
276255
277- // trainLogisticRegression(features.length, trainDs, validDs);
256+ renderScatter ( "skin-bmi-cont" , data , [ "SkinThickness" , "BMI" ] , {
257+ title : "Skin thickness vs BMI" ,
258+ xLabel : "Skin thickness" ,
259+ yLabel : "BMI"
260+ } ) ;
278261
279- const features = [ "Glucose" , "Age" , "Insulin" , "BloodPressure" ] ;
262+ const features = [ "Glucose" ] ;
280263
281264 const [ trainDs , validDs , xTest , yTest ] = createDataSets (
282265 data ,
@@ -285,7 +268,22 @@ const run = async () => {
285268 16
286269 ) ;
287270
288- const model = await trainComplexModel ( features . length , trainDs , validDs ) ;
271+ const model = await trainLogisticRegression (
272+ features . length ,
273+ trainDs ,
274+ validDs
275+ ) ;
276+ 277+ // const features = ["Glucose", "Age", "Insulin", "BloodPressure"];
278+ 279+ // const [trainDs, validDs, xTest, yTest] = createDataSets(
280+ // data,
281+ // features,
282+ // 0.1,
283+ // 16
284+ // );
285+ 286+ // const model = await trainComplexModel(features.length, trainDs, validDs);
289287
290288 const preds = model . predict ( xTest ) . argMax ( - 1 ) ;
291289 const labels = yTest . argMax ( - 1 ) ;
0 commit comments