0: - self.i = max(map(lambda x: int(x.split('_')[1].split('.')[0]), os.listdir(out_dir))) + 1 - + self.i = max(map(lambda x: int(x.split("_")[1].split(".")[0]), os.listdir(out_dir))) + 1 + def add_data(self, data): self.data.append(data) - + def commit(self, archive_name=None): # TODO: streaming cctx = zstandard.ZstdCompressor(level=3) @@ -354,15 +373,18 @@ def commit(self, archive_name=None): if archive_name is None: archive_name = str(int(time.time())) - res = b''.join(map(lambda x: ("%016d" % len(x)).encode('UTF-8') + x, map(lambda x: x.encode('UTF-8'), self.data))) + res = b"".join( + map(lambda x: ("%016d" % len(x)).encode("UTF-8") + x, map(lambda x: x.encode("UTF-8"), self.data)) + ) cdata = cctx.compress(res) - with open(self.out_dir + '/data_' + str(self.i) + '_' + archive_name + '.dat.zst', 'wb') as fh: + with open(self.out_dir + "/data_" + str(self.i) + "_" + archive_name + ".dat.zst", "wb") as fh: fh.write(cdata) self.i += 1 self.data = [] + class JSONArchive: def __init__(self, out_dir): self.out_dir = out_dir @@ -370,17 +392,17 @@ def __init__(self, out_dir): self.data = [] self.i = 0 if os.path.exists(out_dir) and len(os.listdir(out_dir))> 0: - self.i = max(map(lambda x: int(x.split('_')[1].split('.')[0]), os.listdir(out_dir))) + 1 - + self.i = max(map(lambda x: int(x.split("_")[1].split(".")[0]), os.listdir(out_dir))) + 1 + def add_data(self, data): self.data.append(data) - + def commit(self): cctx = zstandard.ZstdCompressor(level=3) - - cdata = cctx.compress(json.dumps(self.data).encode('UTF-8')) - with open(self.out_dir + '/data_' + str(self.i) + '_' + str(int(time.time())) + '.json.zst', 'wb') as fh: + + cdata = cctx.compress(json.dumps(self.data).encode("UTF-8")) + with open(self.out_dir + "/data_" + str(self.i) + "_" + str(int(time.time())) + ".json.zst", "wb") as fh: fh.write(cdata) self.i += 1 - self.data = [] \ No newline at end of file + self.data = [] diff --git a/mftcoder_accelerate/src/data/multi_task_dataset.py b/mftcoder_accelerate/src/data/multi_task_dataset.py index fde298b..63c4b27 100644 --- a/mftcoder_accelerate/src/data/multi_task_dataset.py +++ b/mftcoder_accelerate/src/data/multi_task_dataset.py @@ -2,11 +2,14 @@ # @author Chaoyu Chen # @date 2023年8月18日 +Load dataset in a distributed way. """ + import os import json import math import time +import glob import numpy as np import torch from functools import partial @@ -192,18 +195,21 @@ def load_dataset_from_jsonl(args, shard_data=False, world_size=1, global_rank=0, # 不同数据集在不同文件夹下 for dataset_index in range(len(data_prefixes)): - files = os.listdir(data_prefixes[dataset_index]) + # files = os.listdir(data_prefixes[dataset_index]) + # get all jsonl files and corresponding reading handler + if data_prefixes[dataset_index].endswith(".jsonl"): + files = [data_prefixes[dataset_index]] + else: + files = glob.glob(os.path.join(data_prefixes[dataset_index], "**/*.jsonl"), recursive=True) + cur_dataset_input_ids = [] cur_dataset_loss_mask = [] # support multiple jsonl files under task dir - for file in files: - file_name = data_prefixes[dataset_index] + "/" + file - if os.path.isdir(file_name): - continue + for file_name in files: fin = open(file_name, "r") print(f"[Global Rank {global_rank}] open file {file_name}") - if args.padding_mode == "padding" or args.padding_mode == "pack": + if args.padding_mode == "padding" or args.padding_mode == "pack" or args.padding_mode == "concat": for i, line in enumerate(fin): # pre-sharding if shard_data and i % world_size != global_rank: @@ -254,7 +260,8 @@ def load_dataset_from_jsonl(args, shard_data=False, world_size=1, global_rank=0, cur_train_dataset = {"input_ids": cur_train_input_ids, "loss_mask": cur_train_loss_mask} cur_valid_dataset = {"input_ids": cur_valid_input_ids, "loss_mask": cur_valid_loss_mask} print(f"[Global Rank {global_rank}]shape of cur train dataset: {cur_train_dataset['input_ids'].shape}") - print(f"[Global Rank {global_rank}]shape of cur valid dataset: {cur_valid_dataset['input_ids'].shape}") + if local_valid_num> 0: + print(f"[Global Rank {global_rank}]shape of cur valid dataset: {cur_valid_dataset['input_ids'].shape}") cur_train_ds = GPT2FromRawDataset( "train", @@ -264,32 +271,32 @@ def load_dataset_from_jsonl(args, shard_data=False, world_size=1, global_rank=0, weighted_loss_mode=args.weighted_loss_mode, ds_weight=splits[0], ) - cur_valid_ds = GPT2FromRawDataset( - "valid", - data_prefixes[dataset_index], - cur_valid_dataset, - args.seq_length, - weighted_loss_mode=args.weighted_loss_mode, - ds_weight=splits[1], - ) - all_train_datasets.append(cur_train_ds) - all_valid_datasets.append(cur_valid_ds) all_train_datasets_length.append(len(cur_train_ds)) - all_valid_datasets_length.append(len(cur_valid_ds)) + if local_valid_num> 0: + cur_valid_ds = GPT2FromRawDataset( + "valid", + data_prefixes[dataset_index], + cur_valid_dataset, + args.seq_length, + weighted_loss_mode=args.weighted_loss_mode, + ds_weight=splits[1], + ) + all_valid_datasets.append(cur_valid_ds) + all_valid_datasets_length.append(len(cur_valid_ds)) + else: + cur_valid_ds = None print(f"[Global Rank {global_rank}]num tokens: {num_tokens}") print(f"[Global Rank {global_rank}]effective token rate: {effective_token_rate}") num_tokens = [] ds_fn = partial(ds_weights_by_num_docs_sft) - train_loss_weights, valid_loss_weights = ( - ds_fn(all_train_datasets_length), - ds_fn(all_valid_datasets_length), - ) - + train_loss_weights = ds_fn(all_train_datasets_length) print(f"> train loss weights in rank {global_rank}: {train_loss_weights}") - print(f"> valid loss weights in rank {global_rank}: {valid_loss_weights}") + if all_valid_datasets_length: + valid_loss_weights = ds_fn(all_valid_datasets_length) + print(f"> valid loss weights in rank {global_rank}: {valid_loss_weights}") factor = 1 # calcualte common factor based on token cnt and total sample cnt @@ -299,9 +306,10 @@ def load_dataset_from_jsonl(args, shard_data=False, world_size=1, global_rank=0, print(f"> common denomination factor for CE loss in rank {global_rank}: {factor}") train_sample_weights = [x / sum(all_train_datasets_length) for x in all_train_datasets_length] - valid_sample_weights = [x / sum(all_valid_datasets_length) for x in all_valid_datasets_length] print(f"> train sample weights in rank {global_rank}: {train_sample_weights}") - print(f"> valid sample weights in rank {global_rank}: {valid_sample_weights}") + if all_valid_datasets_length: + valid_sample_weights = [x / sum(all_valid_datasets_length) for x in all_valid_datasets_length] + print(f"> valid sample weights in rank {global_rank}: {valid_sample_weights}") # recompute global_train_num and global_valid_num @@ -312,22 +320,23 @@ def load_dataset_from_jsonl(args, shard_data=False, world_size=1, global_rank=0, global_train_num_samples_tensor = global_train_num_samples_tensor.to(device) torch.distributed.all_reduce(global_train_num_samples_tensor, op=torch.distributed.ReduceOp.SUM) global_train_num = global_train_num_samples_tensor.item() - - global_valid_num_samples_tensor = torch.tensor(local_valid_num, dtype=torch.int32) - global_valid_num_samples_tensor = global_valid_num_samples_tensor.to(device) - torch.distributed.all_reduce(global_valid_num_samples_tensor, op=torch.distributed.ReduceOp.SUM) - global_valid_num = global_valid_num_samples_tensor.item() print(f"> global train num in rank {global_rank}: {global_train_num}") - print(f"> global valid num in rank {global_rank}: {global_valid_num}") + + if local_valid_num> 0: + global_valid_num_samples_tensor = torch.tensor(local_valid_num, dtype=torch.int32) + global_valid_num_samples_tensor = global_valid_num_samples_tensor.to(device) + torch.distributed.all_reduce(global_valid_num_samples_tensor, op=torch.distributed.ReduceOp.SUM) + global_valid_num = global_valid_num_samples_tensor.item() + print(f"> global valid num in rank {global_rank}: {global_valid_num}") torch.distributed.barrier() - for i in range(len(all_train_datasets)): - print( - f"loss weight of train dataset {i} before update in rank {global_rank}: {all_train_datasets[i].ds_weight}" - ) blending_train_dataset = None if all_train_datasets: + for i in range(len(all_train_datasets)): + print( + f"loss weight of train dataset {i} before update in rank {global_rank}: {all_train_datasets[i].ds_weight}" + ) args.do_train = True for i in range(len(all_train_datasets)): all_train_datasets[i].update_ds_weight(train_loss_weights[i] / factor) @@ -338,12 +347,12 @@ def load_dataset_from_jsonl(args, shard_data=False, world_size=1, global_rank=0, all_train_datasets, train_sample_weights, global_train_num, local_train_num ) - for i in range(len(all_valid_datasets)): - print( - f"loss weight of valid dataset {i} before update in rank {global_rank}: {all_valid_datasets[i].ds_weight}" - ) blending_valid_dataset = None if all_valid_datasets: + for i in range(len(all_valid_datasets)): + print( + f"loss weight of valid dataset {i} before update in rank {global_rank}: {all_valid_datasets[i].ds_weight}" + ) args.do_valid = True for i in range(len(all_valid_datasets)): all_valid_datasets[i].update_ds_weight(valid_loss_weights[i] / factor) diff --git a/mftcoder_accelerate/src/data/preprocess_data.py b/mftcoder_accelerate/src/data/preprocess_data.py index 3c912e6..f7226bd 100644 --- a/mftcoder_accelerate/src/data/preprocess_data.py +++ b/mftcoder_accelerate/src/data/preprocess_data.py @@ -9,7 +9,7 @@ import ftfy import glob -# print("In preprocess_data.py, sys path:", sys.path) +# print("In preprocess_data_new.py, sys path:", sys.path) from tokenizer import build_tokenizer @@ -32,7 +32,7 @@ def content_format(content: str): # change chinese punctuation to english ones # text = text.translate(table) - + # if not content.endswith("\n"): content += "\n" return content @@ -101,6 +101,13 @@ def is_question_answer_format(data): return False +def is_query_answer_format(data): + if "query" in data and "answer" in data: + return True + else: + return False + + class Encoder(object): tokenizer = None @@ -125,7 +132,7 @@ def encode(self, text): if len(text_ids)> 0: doc_ids.append(text_ids) if self.args.append_eod: - doc_ids[-1].append(Encoder.tokenizer.eod_id) + doc_ids[-1].append(Encoder.tokenizer.eos_token_id) ids[key] = doc_ids return ids, len(text) @@ -163,6 +170,8 @@ def encode(self, data, verbose=False): data_type = "question_response" elif is_question_answer_format(data): data_type = "question_answer" + elif is_query_answer_format(data): + data_type = "query_answer" elif is_chatml_format(data): data_type = "chatML" elif is_text_format(data): @@ -209,7 +218,7 @@ def _tokenize_fields(self, data, data_type): else: raise ValueError(f"tokenize_mode does not support {self.mode}, please use sft or pretrain") - sft_end_marker_ids = [Encoder.tokenizer.eod_id] + sft_end_marker_ids = [Encoder.tokenizer.eos_token_id] # uniform SST,SFT,MFT input_ids = [] loss_mask = [] @@ -236,7 +245,7 @@ def _tokenize_fields(self, data, data_type): content_ids = self.pure_encode(user_marker + content + assistant_marker) input_ids += content_ids loss_mask += [0] * len(content_ids) - elif role == "bot" or role == "assistant": + elif role == "bot" or role == "assistant" or role == "gpt": content_ids = self.pure_encode(content) + sft_end_marker_ids input_ids += content_ids loss_mask += [1] * len(content_ids) @@ -324,16 +333,16 @@ def _tokenize_fields(self, data, data_type): yield {} def padding(self, input_ids, loss_mask): - pad_id = Encoder.tokenizer.pad_id + pad_id = Encoder.tokenizer.pad_token_id assert len(input_ids) <= self.seq_length, f"padding sequence: {len(input_ids)}> {self.seq_length}" input_ids += [pad_id] * (self.seq_length - len(input_ids)) loss_mask += [0] * (self.seq_length - len(loss_mask)) return {"input_ids": input_ids, "loss_mask": loss_mask} -def find_jsonl_fnames(inputs): +def find_jsonl_fnames(paths): fnames = [] - for p in inputs.split(","): + for p in paths: if not os.path.isdir(p): if p.endswith(".jsonl"): print(f"loading from {p}") diff --git a/mftcoder_accelerate/src/model/deepseek_v2/configuration_deepseek.py b/mftcoder_accelerate/src/model/deepseek_v2/configuration_deepseek.py new file mode 100644 index 0000000..82e0f5d --- /dev/null +++ b/mftcoder_accelerate/src/model/deepseek_v2/configuration_deepseek.py @@ -0,0 +1,206 @@ +from transformers.configuration_utils import PretrainedConfig +from transformers.utils import logging + +logger = logging.get_logger(__name__) + +DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {} +class DeepseekV2Config(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`DeepseekV2Model`]. It is used to instantiate an DeepSeek + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the DeepSeek-V2. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 102400): + Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`DeepseekV2Model`] + hidden_size (`int`, *optional*, defaults to 4096): + Dimension of the hidden representations. + intermediate_size (`int`, *optional*, defaults to 11008): + Dimension of the MLP representations. + moe_intermediate_size (`int`, *optional*, defaults to 1407): + Dimension of the MoE representations. + num_hidden_layers (`int`, *optional*, defaults to 32): + Number of hidden layers in the Transformer decoder. + num_attention_heads (`int`, *optional*, defaults to 32): + Number of attention heads for each attention layer in the Transformer decoder. + n_shared_experts (`int`, *optional*, defaults to None): + Number of shared experts, None means dense model. + n_routed_experts (`int`, *optional*, defaults to None): + Number of routed experts, None means dense model. + routed_scaling_factor (`float`, *optional*, defaults to 1.0): + Scaling factor or routed experts. + topk_method (`str`, *optional*, defaults to `gready`): + Topk method used in routed gate. + n_group (`int`, *optional*, defaults to None): + Number of groups for routed experts. + topk_group (`int`, *optional*, defaults to None): + Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups). + num_experts_per_tok (`int`, *optional*, defaults to None): + Number of selected experts, None means dense model. + moe_layer_freq (`int`, *optional*, defaults to 1): + The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers. + first_k_dense_replace (`int`, *optional*, defaults to 0): + Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head). + \--k dense layers--/ + norm_topk_prob (`bool`, *optional*, defaults to False): + Whether to normalize the weights of the routed experts. + scoring_func (`str`, *optional*, defaults to 'softmax'): + Method of computing expert weights. + aux_loss_alpha (`float`, *optional*, defaults to 0.001): + Auxiliary loss weight coefficient. + seq_aux = (`bool`, *optional*, defaults to True): + Whether to compute the auxiliary loss for each individual sample. + num_key_value_heads (`int`, *optional*): + This is the number of key_value heads that should be used to implement Grouped Query Attention. If + `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if + `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When + converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed + by meanpooling all the original heads within that group. For more details checkout [this + paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to + `num_attention_heads`. + hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): + The non-linear activation function (function or string) in the decoder. + max_position_embeddings (`int`, *optional*, defaults to 2048): + The maximum sequence length that this model might ever be used with. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + rms_norm_eps (`float`, *optional*, defaults to 1e-06): + The epsilon used by the rms normalization layers. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + pad_token_id (`int`, *optional*): + Padding token id. + bos_token_id (`int`, *optional*, defaults to 1): + Beginning of stream token id. + eos_token_id (`int`, *optional*, defaults to 2): + End of stream token id. + pretraining_tp (`int`, *optional*, defaults to 1): + Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this + document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is + necessary to ensure exact reproducibility of the pretraining results. Please refer to [this + issue](https://github.com/pytorch/pytorch/issues/76232). + tie_word_embeddings (`bool`, *optional*, defaults to `False`): + Whether to tie weight embeddings + rope_theta (`float`, *optional*, defaults to 10000.0): + The base period of the RoPE embeddings. + rope_scaling (`Dict`, *optional*): + Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling + strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is + `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update + `max_position_embeddings` to the expected new maximum. + attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): + Whether to use a bias in the query, key, value and output projection layers during self-attention. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + + ```python +>>> from transformers import DeepseekV2Model, DeepseekV2Config + +>>> # Initializing a Deepseek-V2 style configuration +>>> configuration = DeepseekV2Config() + +>>> # Accessing the model configuration +>>> configuration = model.config + ```""" + + model_type = "deepseek_v2" + keys_to_ignore_at_inference = ["past_key_values"] + + def __init__( + self, + vocab_size=102400, + hidden_size=4096, + intermediate_size=11008, + moe_intermediate_size = 1407, + num_hidden_layers=30, + num_attention_heads=32, + num_key_value_heads=32, + n_shared_experts = None, + n_routed_experts = None, + ep_size = 1, + routed_scaling_factor = 1.0, + kv_lora_rank = 512, + q_lora_rank = 1536, + qk_rope_head_dim = 64, + v_head_dim = 128, + qk_nope_head_dim = 128, + topk_method = 'gready', + n_group = None, + topk_group = None, + num_experts_per_tok = None, + moe_layer_freq = 1, + first_k_dense_replace = 0, + norm_topk_prob = False, + scoring_func = 'softmax', + aux_loss_alpha = 0.001, + seq_aux = True, + hidden_act="silu", + max_position_embeddings=2048, + initializer_range=0.02, + rms_norm_eps=1e-6, + use_cache=True, + pad_token_id=None, + bos_token_id=100000, + eos_token_id=100001, + pretraining_tp=1, + tie_word_embeddings=False, + rope_theta=10000.0, + rope_scaling=None, + attention_bias=False, + attention_dropout=0.0, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.moe_intermediate_size = moe_intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.n_shared_experts = n_shared_experts + self.n_routed_experts = n_routed_experts + self.ep_size = ep_size + self.routed_scaling_factor = routed_scaling_factor + self.kv_lora_rank = kv_lora_rank + self.q_lora_rank = q_lora_rank + self.qk_rope_head_dim = qk_rope_head_dim + self.v_head_dim = v_head_dim + self.qk_nope_head_dim = qk_nope_head_dim + self.topk_method = topk_method + self.n_group = n_group + self.topk_group = topk_group + self.num_experts_per_tok = num_experts_per_tok + self.moe_layer_freq = moe_layer_freq + self.first_k_dense_replace = first_k_dense_replace + self.norm_topk_prob = norm_topk_prob + self.scoring_func = scoring_func + self.aux_loss_alpha = aux_loss_alpha + self.seq_aux = seq_aux + # for backward compatibility + if num_key_value_heads is None: + num_key_value_heads = num_attention_heads + + self.num_key_value_heads = num_key_value_heads + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.rms_norm_eps = rms_norm_eps + self.pretraining_tp = pretraining_tp + self.use_cache = use_cache + self.rope_theta = rope_theta + self.rope_scaling = rope_scaling + self.attention_bias = attention_bias + self.attention_dropout = attention_dropout + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + tie_word_embeddings=tie_word_embeddings, + **kwargs, + ) \ No newline at end of file diff --git a/mftcoder_accelerate/src/model/deepseek_v2/modeling_deepseek.py b/mftcoder_accelerate/src/model/deepseek_v2/modeling_deepseek.py new file mode 100644 index 0000000..d1d5e88 --- /dev/null +++ b/mftcoder_accelerate/src/model/deepseek_v2/modeling_deepseek.py @@ -0,0 +1,1925 @@ +# coding=utf-8 +# Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch DeepSeek model.""" +import math +import warnings +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn.functional as F +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from transformers.activations import ACT2FN +from transformers.cache_utils import Cache, DynamicCache +from transformers.modeling_attn_mask_utils import ( + AttentionMaskConverter, + _prepare_4d_attention_mask, + _prepare_4d_causal_attention_mask, +) +from transformers.modeling_outputs import ( + BaseModelOutputWithPast, + CausalLMOutputWithPast, + SequenceClassifierOutputWithPast, +) +from transformers.modeling_utils import PreTrainedModel +from transformers.pytorch_utils import ( + ALL_LAYERNORM_LAYERS, + is_torch_greater_or_equal_than_1_13, +) +from transformers.utils import ( + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_flash_attn_2_available, + is_flash_attn_greater_or_equal_2_10, + logging, + replace_return_docstrings, +) +from transformers.utils.import_utils import is_torch_fx_available +from .configuration_deepseek import DeepseekV2Config +import torch.distributed as dist +import numpy as np + +if is_flash_attn_2_available(): + from flash_attn import flash_attn_func, flash_attn_varlen_func + from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa + + +# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph. +# It means that the function will not be traced through and simply appear as a node in the graph. +if is_torch_fx_available(): + if not is_torch_greater_or_equal_than_1_13: + import torch.fx + + _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask) + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "DeepseekV2Config" + + +def _get_unpad_data(attention_mask): + seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) + indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() + max_seqlen_in_batch = seqlens_in_batch.max().item() + cu_seqlens = F.pad( + torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0) + ) + return ( + indices, + cu_seqlens, + max_seqlen_in_batch, + ) + + +class DeepseekV2RMSNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + DeepseekV2RMSNorm is equivalent to T5LayerNorm + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + variance = hidden_states.pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + return self.weight * hidden_states.to(input_dtype) + + +ALL_LAYERNORM_LAYERS.append(DeepseekV2RMSNorm) + + +class DeepseekV2RotaryEmbedding(nn.Module): + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): + super().__init__() + + self.dim = dim + self.max_position_embeddings = max_position_embeddings + self.base = base + inv_freq = 1.0 / ( + self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) + ) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + # Build here to make `torch.jit.trace` work. + self._set_cos_sin_cache( + seq_len=max_position_embeddings, + device=self.inv_freq.device, + dtype=torch.get_default_dtype(), + ) + self.max_seq_len_cached = None + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange( + self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype + ) + + freqs = torch.outer(t, self.inv_freq.to(t.device)) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + def forward(self, x, seq_len=None): + # x: [bs, num_attention_heads, seq_len, head_size] + if self.max_seq_len_cached is None or seq_len> self.max_seq_len_cached: + self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) + + return ( + self.cos_cached[:seq_len].to(dtype=x.dtype), + self.sin_cached[:seq_len].to(dtype=x.dtype), + ) + + +# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV2 +class DeepseekV2LinearScalingRotaryEmbedding(DeepseekV2RotaryEmbedding): + """DeepseekV2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" + + def __init__( + self, + dim, + max_position_embeddings=2048, + base=10000, + device=None, + scaling_factor=1.0, + ): + self.scaling_factor = scaling_factor + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange( + self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype + ) + t = t / self.scaling_factor + + freqs = torch.outer(t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + +# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV2 +class DeepseekV2DynamicNTKScalingRotaryEmbedding(DeepseekV2RotaryEmbedding): + """DeepseekV2RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" + + def __init__( + self, + dim, + max_position_embeddings=2048, + base=10000, + device=None, + scaling_factor=1.0, + ): + self.scaling_factor = scaling_factor + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + + if seq_len> self.max_position_embeddings: + base = self.base * ( + (self.scaling_factor * seq_len / self.max_position_embeddings) + - (self.scaling_factor - 1) + ) ** (self.dim / (self.dim - 2)) + inv_freq = 1.0 / ( + base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) + ) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + t = torch.arange( + self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype + ) + + freqs = torch.outer(t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + +# Inverse dim formula to find dim based on number of rotations +def yarn_find_correction_dim( + num_rotations, dim, base=10000, max_position_embeddings=2048 +): + return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / ( + 2 * math.log(base) + ) + + +# Find dim range bounds based on rotations +def yarn_find_correction_range( + low_rot, high_rot, dim, base=10000, max_position_embeddings=2048 +): + low = math.floor( + yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings) + ) + high = math.ceil( + yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings) + ) + return max(low, 0), min(high, dim - 1) # Clamp values just in case + + +def yarn_get_mscale(scale=1, mscale=1): + if scale <= 1: + return 1.0 + return 0.1 * mscale * math.log(scale) + 1.0 + + +def yarn_linear_ramp_mask(min, max, dim): + if min == max: + max += 0.001 # Prevent singularity + + linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min) + ramp_func = torch.clamp(linear_func, 0, 1) + return ramp_func + + +class DeepseekV2YarnRotaryEmbedding(DeepseekV2RotaryEmbedding): + + def __init__( + self, + dim, + max_position_embeddings=2048, + base=10000, + device=None, + scaling_factor=1.0, + original_max_position_embeddings=4096, + beta_fast=32, + beta_slow=1, + mscale=1, + mscale_all_dim=0, + ): + self.scaling_factor = scaling_factor + self.original_max_position_embeddings = original_max_position_embeddings + self.beta_fast = beta_fast + self.beta_slow = beta_slow + self.mscale = mscale + self.mscale_all_dim = mscale_all_dim + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + dim = self.dim + + freq_extra = 1.0 / ( + self.base + ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim) + ) + freq_inter = 1.0 / ( + self.scaling_factor + * self.base + ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim) + ) + + low, high = yarn_find_correction_range( + self.beta_fast, + self.beta_slow, + dim, + self.base, + self.original_max_position_embeddings, + ) + inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to( + device=device, dtype=torch.float32 + ) + inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask + self.register_buffer("inv_freq", inv_freq, persistent=False) + + t = torch.arange(seq_len, device=device, dtype=torch.float32) + + freqs = torch.outer(t, inv_freq) + + _mscale = float( + yarn_get_mscale(self.scaling_factor, self.mscale) + / yarn_get_mscale(self.scaling_factor, self.mscale_all_dim) + ) + + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer( + "cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False + ) + self.register_buffer( + "sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False + ) + + +# Copied from transformers.models.llama.modeling_llama.rotate_half +def rotate_half(x): + """Rotates half the hidden dims of the input.""" + x1 = x[..., : x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + +# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb +def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): + """Applies Rotary Position Embedding to the query and key tensors. + + Args: + q (`torch.Tensor`): The query tensor. + k (`torch.Tensor`): The key tensor. + cos (`torch.Tensor`): The cosine part of the rotary embedding. + sin (`torch.Tensor`): The sine part of the rotary embedding. + position_ids (`torch.Tensor`): + The position indices of the tokens corresponding to the query and key tensors. For example, this can be + used to pass offsetted position ids when working with a KV-cache. + unsqueeze_dim (`int`, *optional*, defaults to 1): + The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and + sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note + that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and + k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes + cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have + the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. + Returns: + `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. + """ + cos = cos[position_ids].unsqueeze(unsqueeze_dim) + sin = sin[position_ids].unsqueeze(unsqueeze_dim) + + b, h, s, d = q.shape + q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d) + + b, h, s, d = k.shape + k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d) + + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed, k_embed + + +class DeepseekV2MLP(nn.Module): + def __init__(self, config, hidden_size=None, intermediate_size=None): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size if hidden_size is None else hidden_size + self.intermediate_size = ( + config.intermediate_size if intermediate_size is None else intermediate_size + ) + + self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) + self.act_fn = ACT2FN[config.hidden_act] + + def forward(self, x): + down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) + return down_proj + + +class MoEGate(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.top_k = config.num_experts_per_tok + self.n_routed_experts = config.n_routed_experts + self.routed_scaling_factor = config.routed_scaling_factor + self.scoring_func = config.scoring_func + self.alpha = config.aux_loss_alpha + self.seq_aux = config.seq_aux + self.topk_method = config.topk_method + self.n_group = config.n_group + self.topk_group = config.topk_group + + # topk selection algorithm + self.norm_topk_prob = config.norm_topk_prob + self.gating_dim = config.hidden_size + self.weight = nn.Parameter( + torch.empty((self.n_routed_experts, self.gating_dim)) + ) + self.reset_parameters() + + def reset_parameters(self) -> None: + import torch.nn.init as init + + init.kaiming_uniform_(self.weight, a=math.sqrt(5)) + + def forward(self, hidden_states): + bsz, seq_len, h = hidden_states.shape + ### compute gating score + hidden_states = hidden_states.view(-1, h) + logits = F.linear( + hidden_states.type(torch.float32), self.weight.type(torch.float32), None + ) + if self.scoring_func == "softmax": + scores = logits.softmax(dim=-1, dtype=torch.float32) + else: + raise NotImplementedError( + f"insupportable scoring function for MoE gating: {self.scoring_func}" + ) + + ### select top-k experts + if self.topk_method == "greedy": + topk_weight, topk_idx = torch.topk( + scores, k=self.top_k, dim=-1, sorted=False + ) + elif self.topk_method == "group_limited_greedy": + group_scores = ( + scores.view(bsz * seq_len, self.n_group, -1).max(dim=-1).values + ) # [n, n_group] + group_idx = torch.topk( + group_scores, k=self.topk_group, dim=-1, sorted=False + )[ + 1 + ] # [n, top_k_group] + group_mask = torch.zeros_like(group_scores) # [n, n_group] + group_mask.scatter_(1, group_idx, 1) # [n, n_group] + score_mask = ( + group_mask.unsqueeze(-1) + .expand( + bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group + ) + .reshape(bsz * seq_len, -1) + ) # [n, e] + tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e] + topk_weight, topk_idx = torch.topk( + tmp_scores, k=self.top_k, dim=-1, sorted=False + ) + + ### norm gate to sum 1 + if self.top_k> 1 and self.norm_topk_prob: + denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20 + topk_weight = topk_weight / denominator + else: + topk_weight = topk_weight * self.routed_scaling_factor + ### expert-level computation auxiliary loss + if self.training and self.alpha> 0.0: + scores_for_aux = scores + aux_topk = self.top_k + # always compute aux loss based on the naive greedy topk method + topk_idx_for_aux_loss = topk_idx.view(bsz, -1) + if self.seq_aux: + scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1) + ce = torch.zeros( + bsz, self.n_routed_experts, device=hidden_states.device + ) + ce.scatter_add_( + 1, + topk_idx_for_aux_loss, + torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device), + ).div_(seq_len * aux_topk / self.n_routed_experts) + aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum( + dim=1 + ).mean() * self.alpha + else: + mask_ce = F.one_hot( + topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts + ) + ce = mask_ce.float().mean(0) + Pi = scores_for_aux.mean(0) + fi = ce * self.n_routed_experts + aux_loss = (Pi * fi).sum() * self.alpha + else: + aux_loss = None + return topk_idx, topk_weight, aux_loss + + +class AddAuxiliaryLoss(torch.autograd.Function): + """ + The trick function of adding auxiliary (aux) loss, + which includes the gradient of the aux loss during backpropagation. + """ + + @staticmethod + def forward(ctx, x, loss): + assert loss.numel() == 1 + ctx.dtype = loss.dtype + ctx.required_aux_loss = loss.requires_grad + return x + + @staticmethod + def backward(ctx, grad_output): + grad_loss = None + if ctx.required_aux_loss: + grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device) + return grad_output, grad_loss + + +class DeepseekV2MoE(nn.Module): + """ + A mixed expert module containing shared experts. + """ + + def __init__(self, config): + super().__init__() + self.config = config + self.num_experts_per_tok = config.num_experts_per_tok + + if hasattr(config, "ep_size") and config.ep_size> 1: + assert config.ep_size == dist.get_world_size() + self.ep_size = config.ep_size + self.experts_per_rank = config.n_routed_experts // config.ep_size + self.ep_rank = dist.get_rank() + self.experts = nn.ModuleList( + [ + ( + DeepseekV2MLP( + config, intermediate_size=config.moe_intermediate_size + ) + if i>= self.ep_rank * self.experts_per_rank + and i < (self.ep_rank + 1) * self.experts_per_rank + else None + ) + for i in range(config.n_routed_experts) + ] + ) + else: + self.ep_size = 1 + self.experts_per_rank = config.n_routed_experts + self.ep_rank = 0 + self.experts = nn.ModuleList( + [ + DeepseekV2MLP(config, intermediate_size=config.moe_intermediate_size) + for i in range(config.n_routed_experts) + ] + ) + self.gate = MoEGate(config) + if config.n_shared_experts is not None: + intermediate_size = config.moe_intermediate_size * config.n_shared_experts + self.shared_experts = DeepseekV2MLP( + config=config, intermediate_size=intermediate_size + ) + + def forward(self, hidden_states): + # save dtype before computation + input_dtype = hidden_states.dtype + identity = hidden_states + orig_shape = hidden_states.shape + topk_idx, topk_weight, aux_loss = self.gate(hidden_states) + hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) + flat_topk_idx = topk_idx.view(-1) + if self.training: + hidden_states = hidden_states.repeat_interleave( + self.num_experts_per_tok, dim=0 + ) + y = torch.empty_like(hidden_states) + for i, expert in enumerate(self.experts): + y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i]) + y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) + y = y.view(*orig_shape) + y = AddAuxiliaryLoss.apply(y, aux_loss) + else: + y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape) + if self.config.n_shared_experts is not None: + y = y + self.shared_experts(identity) + # keep dtype same after moe forward + return y.to(input_dtype) + + @torch.no_grad() + def moe_infer(self, x, topk_ids, topk_weight): + cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts))) + cnts.scatter_(1, topk_ids, 1) + tokens_per_expert = cnts.sum(dim=0) + idxs = topk_ids.view(-1).argsort() + sorted_tokens = x[idxs // topk_ids.shape[1]] + sorted_tokens_shape = sorted_tokens.shape + if self.ep_size> 1: + tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1) + tokens_per_expert_group = tokens_per_expert.new_empty( + tokens_per_expert.shape[0] + ) + dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert) + output_splits = ( + tokens_per_expert_group.view(self.ep_size, -1) + .sum(1) + .cpu() + .numpy() + .tolist() + ) + gathered_tokens = sorted_tokens.new_empty( + tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1] + ) + input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist() + dist.all_to_all( + list(gathered_tokens.split(output_splits)), + list(sorted_tokens.split(input_split_sizes)), + ) + tokens_per_expert_post_gather = tokens_per_expert_group.view( + self.ep_size, self.experts_per_rank + ).sum(dim=0) + gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32) + s = 0 + for i, k in enumerate(tokens_per_expert_group.cpu().numpy()): + gatherd_idxs[s : s + k] = i % self.experts_per_rank + s += k + gatherd_idxs = gatherd_idxs.argsort() + sorted_tokens = gathered_tokens[gatherd_idxs] + tokens_per_expert = tokens_per_expert_post_gather + tokens_per_expert = tokens_per_expert.cpu().numpy() + + outputs = [] + start_idx = 0 + for i, num_tokens in enumerate(tokens_per_expert): + end_idx = start_idx + num_tokens + if num_tokens == 0: + continue + expert = self.experts[i + self.ep_rank * self.experts_per_rank] + tokens_for_this_expert = sorted_tokens[start_idx:end_idx] + expert_out = expert(tokens_for_this_expert) + outputs.append(expert_out) + start_idx = end_idx + + outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0) + if self.ep_size> 1: + new_x = torch.empty_like(outs) + new_x[gatherd_idxs] = outs + gathered_tokens = new_x.new_empty(*sorted_tokens_shape) + dist.all_to_all( + list(gathered_tokens.split(input_split_sizes)), + list(new_x.split(output_splits)), + ) + outs = gathered_tokens + + new_x = torch.empty_like(outs) + new_x[idxs] = outs + final_out = ( + new_x.view(*topk_ids.shape, -1) + .type(topk_weight.dtype) + .mul_(topk_weight.unsqueeze(dim=-1)) + .sum(dim=1) + .type(new_x.dtype) + ) + return final_out + + +# Copied from transformers.models.llama.modeling_llama.repeat_kv +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, + num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) + """ + batch, num_key_value_heads, slen, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, None, :, :].expand( + batch, num_key_value_heads, n_rep, slen, head_dim + ) + return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) + + +# Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV2 +class DeepseekV2Attention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, config: DeepseekV2Config, layer_idx: Optional[int] = None): + super().__init__() + self.config = config + self.layer_idx = layer_idx + if layer_idx is None: + logger.warning_once( + f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " + "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " + "when creating this class." + ) + + self.attention_dropout = config.attention_dropout + self.hidden_size = config.hidden_size + self.num_heads = config.num_attention_heads + + self.max_position_embeddings = config.max_position_embeddings + self.rope_theta = config.rope_theta + self.q_lora_rank = config.q_lora_rank + self.qk_rope_head_dim = config.qk_rope_head_dim + self.kv_lora_rank = config.kv_lora_rank + self.v_head_dim = config.v_head_dim + self.qk_nope_head_dim = config.qk_nope_head_dim + self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim + + self.is_causal = True + + if self.q_lora_rank is None: + self.q_proj = nn.Linear( + self.hidden_size, self.num_heads * self.q_head_dim, bias=False + ) + else: + self.q_a_proj = nn.Linear( + self.hidden_size, config.q_lora_rank, bias=config.attention_bias + ) + self.q_a_layernorm = DeepseekV2RMSNorm(config.q_lora_rank) + self.q_b_proj = nn.Linear( + config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False + ) + + self.kv_a_proj_with_mqa = nn.Linear( + self.hidden_size, + config.kv_lora_rank + config.qk_rope_head_dim, + bias=config.attention_bias, + ) + self.kv_a_layernorm = DeepseekV2RMSNorm(config.kv_lora_rank) + self.kv_b_proj = nn.Linear( + config.kv_lora_rank, + self.num_heads + * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim), + bias=False, + ) + + self.o_proj = nn.Linear( + self.num_heads * self.v_head_dim, + self.hidden_size, + bias=config.attention_bias, + ) + self._init_rope() + + self.softmax_scale = self.q_head_dim ** (-0.5) + if self.config.rope_scaling is not None: + mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0) + scaling_factor = self.config.rope_scaling["factor"] + if mscale_all_dim: + mscale = yarn_get_mscale(scaling_factor, mscale_all_dim) + self.softmax_scale = self.softmax_scale * mscale * mscale + + def _init_rope(self): + if self.config.rope_scaling is None: + self.rotary_emb = DeepseekV2RotaryEmbedding( + self.qk_rope_head_dim, + max_position_embeddings=self.max_position_embeddings, + base=self.rope_theta, + ) + else: + scaling_type = self.config.rope_scaling["type"] + scaling_factor = self.config.rope_scaling["factor"] + if scaling_type == "linear": + self.rotary_emb = DeepseekV2LinearScalingRotaryEmbedding( + self.qk_rope_head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + ) + elif scaling_type == "dynamic": + self.rotary_emb = DeepseekV2DynamicNTKScalingRotaryEmbedding( + self.qk_rope_head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + ) + elif scaling_type == "yarn": + kwargs = { + key: self.config.rope_scaling[key] + for key in [ + "original_max_position_embeddings", + "beta_fast", + "beta_slow", + "mscale", + "mscale_all_dim", + ] + if key in self.config.rope_scaling + } + self.rotary_emb = DeepseekV2YarnRotaryEmbedding( + self.qk_rope_head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + **kwargs, + ) + else: + raise ValueError(f"Unknown RoPE scaling type {scaling_type}") + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return ( + tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim) + .transpose(1, 2) + .contiguous() + ) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + bsz, q_len, _ = hidden_states.size() + + if self.q_lora_rank is None: + q = self.q_proj(hidden_states) + else: + q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))) + q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2) + q_nope, q_pe = torch.split( + q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1 + ) + + compressed_kv = self.kv_a_proj_with_mqa(hidden_states) + compressed_kv, k_pe = torch.split( + compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1 + ) + k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2) + kv = ( + self.kv_b_proj(self.kv_a_layernorm(compressed_kv)) + .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim) + .transpose(1, 2) + ) + + k_nope, value_states = torch.split( + kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1 + ) + kv_seq_len = value_states.shape[-2] + if past_key_value is not None: + if self.layer_idx is None: + raise ValueError( + f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " + "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " + "with a layer index." + ) + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + + q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids) + + query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) + query_states[:, :, :, : self.qk_nope_head_dim] = q_nope + query_states[:, :, :, self.qk_nope_head_dim :] = q_pe + + key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) + key_states[:, :, :, : self.qk_nope_head_dim] = k_nope + key_states[:, :, :, self.qk_nope_head_dim :] = k_pe + if past_key_value is not None: + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update( + key_states, value_states, self.layer_idx, cache_kwargs + ) + + attn_weights = ( + torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale + ) + + if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): + raise ValueError( + f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" + f" {attn_weights.size()}" + ) + assert attention_mask is not None + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights + attention_mask + + # upcast attention to fp32 + attn_weights = nn.functional.softmax( + attn_weights, dim=-1, dtype=torch.float32 + ).to(query_states.dtype) + attn_weights = nn.functional.dropout( + attn_weights, p=self.attention_dropout, training=self.training + ) + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + + attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim) + + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + +# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV2 +class DeepseekV2FlashAttention2(DeepseekV2Attention): + """ + DeepseekV2 flash attention module. This module inherits from `DeepseekV2Attention` as the weights of the module stays + untouched. The only required change would be on the forward pass where it needs to correctly call the public API of + flash attention and deal with padding tokens in case the input contains any of them. + """ + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. + # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. + # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). + self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + # DeepseekV2FlashAttention2 attention does not support output_attentions + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + + # overwrite attention_mask with padding_mask + attention_mask = kwargs.pop("padding_mask") + + output_attentions = False + + bsz, q_len, _ = hidden_states.size() + + if self.q_lora_rank is None: + # print(f"dtype of hidden_states: {hidden_states.dtype}") + # print(f"dtype of q_proj: {self.q_proj.weight.dtype}") + q = self.q_proj(hidden_states) + else: + q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))) + q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2) + q_nope, q_pe = torch.split( + q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1 + ) + + # Flash attention requires the input to have the shape + # batch_size x seq_length x head_dim x hidden_dim + # therefore we just need to keep the original shape + compressed_kv = self.kv_a_proj_with_mqa(hidden_states) + compressed_kv, k_pe = torch.split( + compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1 + ) + k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2) + kv = ( + self.kv_b_proj(self.kv_a_layernorm(compressed_kv)) + .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim) + .transpose(1, 2) + ) + + k_nope, value_states = torch.split( + kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1 + ) + kv_seq_len = value_states.shape[-2] + + kv_seq_len = value_states.shape[-2] + if past_key_value is not None: + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids) + + query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) + query_states[:, :, :, : self.qk_nope_head_dim] = q_nope + query_states[:, :, :, self.qk_nope_head_dim :] = q_pe + + key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) + key_states[:, :, :, : self.qk_nope_head_dim] = k_nope + key_states[:, :, :, self.qk_nope_head_dim :] = k_pe + + if self.q_head_dim != self.v_head_dim: + value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim]) + + if past_key_value is not None: + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update( + key_states, value_states, self.layer_idx, cache_kwargs + ) + + # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache + # to be able to avoid many of these transpose/reshape/view. + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.transpose(1, 2) + + dropout_rate = self.attention_dropout if self.training else 0.0 + + # In PEFT, usually we cast the layer norms in float32 for training stability reasons + # therefore the input hidden states gets silently casted in float32. Hence, we need + # cast them back in the correct dtype just to be sure everything works as expected. + # This might slowdown training & inference so it is recommended to not cast the LayerNorms + # in fp32. (DeepseekV2RMSNorm handles it correctly) + + input_dtype = query_states.dtype + if input_dtype == torch.float32: + # Handle the case where the model is quantized + if hasattr(self.config, "_pre_quantization_dtype"): + target_dtype = self.config._pre_quantization_dtype + elif torch.is_autocast_enabled(): + target_dtype = torch.get_autocast_gpu_dtype() + else: + target_dtype = self.q_proj.weight.dtype if self.q_lora_rank is None else self.q_a_proj.weight.dtype + + logger.warning_once( + f"The input hidden states seems to be silently casted in float32, this might be related to" + f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" + f" {target_dtype}." + ) + + query_states = query_states.to(target_dtype) + key_states = key_states.to(target_dtype) + value_states = value_states.to(target_dtype) + + attn_output = self._flash_attention_forward( + query_states, + key_states, + value_states, + attention_mask, + q_len, + dropout=dropout_rate, + softmax_scale=self.softmax_scale, + ) + if self.q_head_dim != self.v_head_dim: + attn_output = attn_output[:, :, :, : self.v_head_dim] + + attn_output = attn_output.reshape( + bsz, q_len, self.num_heads * self.v_head_dim + ).contiguous() + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + def _flash_attention_forward( + self, + query_states, + key_states, + value_states, + attention_mask, + query_length, + dropout=0.0, + softmax_scale=None, + ): + """ + Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token + first unpad the input, then computes the attention scores and pad the final attention scores. + + Args: + query_states (`torch.Tensor`): + Input query states to be passed to Flash Attention API + key_states (`torch.Tensor`): + Input key states to be passed to Flash Attention API + value_states (`torch.Tensor`): + Input value states to be passed to Flash Attention API + attention_mask (`torch.Tensor`): + The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the + position of padding tokens and 1 for the position of non-padding tokens. + dropout (`int`, *optional*): + Attention dropout + softmax_scale (`float`, *optional*): + The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) + """ + if not self._flash_attn_uses_top_left_mask: + causal = self.is_causal + else: + # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV2FlashAttention2 __init__. + causal = self.is_causal and query_length != 1 + + # Contains at least one padding token in the sequence + if attention_mask is not None: + batch_size = query_states.shape[0] + ( + query_states, + key_states, + value_states, + indices_q, + cu_seq_lens, + max_seq_lens, + ) = self._upad_input( + query_states, key_states, value_states, attention_mask, query_length + ) + + cu_seqlens_q, cu_seqlens_k = cu_seq_lens + max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens + + attn_output_unpad = flash_attn_varlen_func( + query_states, + key_states, + value_states, + cu_seqlens_q=cu_seqlens_q, + cu_seqlens_k=cu_seqlens_k, + max_seqlen_q=max_seqlen_in_batch_q, + max_seqlen_k=max_seqlen_in_batch_k, + dropout_p=dropout, + softmax_scale=softmax_scale, + causal=causal, + ) + + attn_output = pad_input( + attn_output_unpad, indices_q, batch_size, query_length + ) + else: + attn_output = flash_attn_func( + query_states, + key_states, + value_states, + dropout, + softmax_scale=softmax_scale, + causal=causal, + ) + + return attn_output + + def _upad_input( + self, query_layer, key_layer, value_layer, attention_mask, query_length + ): + indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) + batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape + + key_layer = index_first_axis( + key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), + indices_k, + ) + value_layer = index_first_axis( + value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), + indices_k, + ) + if query_length == kv_seq_len: + query_layer = index_first_axis( + query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), + indices_k, + ) + cu_seqlens_q = cu_seqlens_k + max_seqlen_in_batch_q = max_seqlen_in_batch_k + indices_q = indices_k + elif query_length == 1: + max_seqlen_in_batch_q = 1 + cu_seqlens_q = torch.arange( + batch_size + 1, dtype=torch.int32, device=query_layer.device + ) # There is a memcpy here, that is very bad. + indices_q = cu_seqlens_q[:-1] + query_layer = query_layer.squeeze(1) + else: + # The -q_len: slice assumes left padding. + attention_mask = attention_mask[:, -query_length:] + query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( + query_layer, attention_mask + ) + + return ( + query_layer, + key_layer, + value_layer, + indices_q, + (cu_seqlens_q, cu_seqlens_k), + (max_seqlen_in_batch_q, max_seqlen_in_batch_k), + ) + + +ATTENTION_CLASSES = { + "eager": DeepseekV2Attention, + "flash_attention_2": DeepseekV2FlashAttention2, +} + + +class DeepseekV2DecoderLayer(nn.Module): + def __init__(self, config: DeepseekV2Config, layer_idx: int): + super().__init__() + self.hidden_size = config.hidden_size + + self.self_attn = ATTENTION_CLASSES[config._attn_implementation]( + config=config, layer_idx=layer_idx + ) + + self.mlp = ( + DeepseekV2MoE(config) + if ( + config.n_routed_experts is not None + and layer_idx>= config.first_k_dense_replace + and layer_idx % config.moe_layer_freq == 0 + ) + else DeepseekV2MLP(config) + ) + self.input_layernorm = DeepseekV2RMSNorm( + config.hidden_size, eps=config.rms_norm_eps + ) + self.post_attention_layernorm = DeepseekV2RMSNorm( + config.hidden_size, eps=config.rms_norm_eps + ) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + **kwargs, + ) -> Tuple[ + torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] + ]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`, *optional*): + attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, + query_sequence_length, key_sequence_length)` if default attention is used. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states + """ + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + residual = hidden_states + # print(f"1. dtype of residual: {residual.dtype}") + + hidden_states = self.input_layernorm(hidden_states) + # print(f"2. dtype of hidden_states before attn: {hidden_states.dtype}") + # Self Attention + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + **kwargs, + ) + # print(f"3. dtype of hidden_states after attn: {hidden_states.dtype}") + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + # print(f"4. dtype of hidden_states after post layernorm: {hidden_states.dtype}") + hidden_states = self.mlp(hidden_states) + # print(f"5. dtype of hidden_states after mlp: {hidden_states.dtype}") + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +DeepseekV2_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`DeepseekV2Config`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + "The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.", + DeepseekV2_START_DOCSTRING, +) +class DeepseekV2PreTrainedModel(PreTrainedModel): + config_class = DeepseekV2Config + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["DeepseekV2DecoderLayer"] + _skip_keys_device_placement = "past_key_values" + _supports_flash_attn_2 = True + _supports_cache_class = True + + def _init_weights(self, module): + std = self.config.initializer_range + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +DeepseekV2_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): + Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` + returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. + + Two formats are allowed: + - a [`~cache_utils.Cache`] instance; + - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy + cache format. + + The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the + legacy cache format will be returned. + + If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't + have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` + of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.", + DeepseekV2_START_DOCSTRING, +) +class DeepseekV2Model(DeepseekV2PreTrainedModel): + """ + Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV2DecoderLayer`] + + Args: + config: DeepseekV2Config + """ + + def __init__(self, config: DeepseekV2Config): + super().__init__(config) + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + + self.embed_tokens = nn.Embedding( + config.vocab_size, config.hidden_size, self.padding_idx + ) + self.layers = nn.ModuleList( + [ + DeepseekV2DecoderLayer(config, layer_idx) + for layer_idx in range(config.num_hidden_layers) + ] + ) + self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" + self.norm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = ( + output_attentions + if output_attentions is not None + else self.config.output_attentions + ) + output_hidden_states = ( + output_hidden_states + if output_hidden_states is not None + else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + + return_dict = ( + return_dict if return_dict is not None else self.config.use_return_dict + ) + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError( + "You cannot specify both input_ids and inputs_embeds at the same time" + ) + elif input_ids is not None: + batch_size, seq_length = input_ids.shape[:2] + elif inputs_embeds is not None: + batch_size, seq_length = inputs_embeds.shape[:2] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers." + ) + use_cache = False + + past_key_values_length = 0 + if use_cache: + use_legacy_cache = not isinstance(past_key_values, Cache) + if use_legacy_cache: + past_key_values = DynamicCache.from_legacy_cache(past_key_values) + past_key_values_length = past_key_values.get_usable_length(seq_length) + + if position_ids is None: + device = input_ids.device if input_ids is not None else inputs_embeds.device + position_ids = torch.arange( + past_key_values_length, + seq_length + past_key_values_length, + dtype=torch.long, + device=device, + ) + position_ids = position_ids.unsqueeze(0) + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + if self._use_flash_attention_2: + # 2d mask is passed through the layers + attention_mask = ( + attention_mask + if (attention_mask is not None and 0 in attention_mask) + else None + ) + else: + # 4d mask is passed through the layers + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, + (batch_size, seq_length), + inputs_embeds, + past_key_values_length, + ) + + # embed positions + hidden_states = inputs_embeds + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + next_decoder_cache = None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + attention_mask, + position_ids, + past_key_values, + output_attentions, + use_cache, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_values, + output_attentions=output_attentions, + use_cache=use_cache, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache = layer_outputs[2 if output_attentions else 1] + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = None + if use_cache: + next_cache = ( + next_decoder_cache.to_legacy_cache() + if use_legacy_cache + else next_decoder_cache + ) + if not return_dict: + return tuple( + v + for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] + if v is not None + ) + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + + +class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + super().__init__(config) + self.model = DeepseekV2Model(config) + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + + @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING) + @replace_return_docstrings( + output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC + ) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`. + + Returns: + + Example: + + ```python +>>> from transformers import AutoTokenizer, DeepseekV2ForCausalLM + +>>> model = DeepseekV2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) +>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) + +>>> prompt = "Hey, are you conscious? Can you talk to me?" +>>> inputs = tokenizer(prompt, return_tensors="pt") + +>>> # Generate +>>> generate_ids = model.generate(inputs.input_ids, max_length=30) +>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + output_attentions = ( + output_attentions + if output_attentions is not None + else self.config.output_attentions + ) + output_hidden_states = ( + output_hidden_states + if output_hidden_states is not None + else self.config.output_hidden_states + ) + return_dict = ( + return_dict if return_dict is not None else self.config.use_return_dict + ) + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + logits = self.lm_head(hidden_states) + logits = logits.float() + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model parallelism + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, + input_ids, + past_key_values=None, + attention_mask=None, + inputs_embeds=None, + **kwargs, + ): + if past_key_values is not None: + if isinstance(past_key_values, Cache): + cache_length = past_key_values.get_seq_length() + past_length = past_key_values.seen_tokens + max_cache_length = past_key_values.get_max_length() + else: + cache_length = past_length = past_key_values[0][0].shape[2] + max_cache_length = None + + # Keep only the unprocessed tokens: + # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where + # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as + # input) + if ( + attention_mask is not None + and attention_mask.shape[1]> input_ids.shape[1] + ): + input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] + # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard + # input_ids based on the past_length. + elif past_length < input_ids.shape[1]: + input_ids = input_ids[:, past_length:] + # 3 - Otherwise (past_length>= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. + + # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. + if ( + max_cache_length is not None + and attention_mask is not None + and cache_length + input_ids.shape[1]> max_cache_length + ): + attention_mask = attention_mask[:, -max_cache_length:] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1] :] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + } + ) + return model_inputs + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple( + past_state.index_select(0, beam_idx.to(past_state.device)) + for past_state in layer_past + ), + ) + return reordered_past + + +@add_start_docstrings( + """ + The DeepseekV2 Model transformer with a sequence classification head on top (linear layer). + + [`DeepseekV2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models + (e.g. GPT-2) do. + + Since it does classification on the last token, it requires to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """, + DeepseekV2_START_DOCSTRING, +) +class DeepseekV2ForSequenceClassification(DeepseekV2PreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.model = DeepseekV2Model(config) + self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels> 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = ( + return_dict if return_dict is not None else self.config.use_return_dict + ) + + transformer_outputs = self.model( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + + if input_ids is not None: + batch_size = input_ids.shape[0] + else: + batch_size = inputs_embeds.shape[0] + + if self.config.pad_token_id is None and batch_size != 1: + raise ValueError( + "Cannot handle batch sizes> 1 if no padding token is defined." + ) + if self.config.pad_token_id is None: + sequence_lengths = -1 + else: + if input_ids is not None: + sequence_lengths = ( + torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 + ).to(logits.device) + else: + sequence_lengths = -1 + + pooled_logits = logits[ + torch.arange(batch_size, device=logits.device), sequence_lengths + ] + + loss = None + if labels is not None: + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels> 1 and ( + labels.dtype == torch.long or labels.dtype == torch.int + ): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct( + pooled_logits.view(-1, self.num_labels), labels.view(-1) + ) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(pooled_logits, labels) + if not return_dict: + output = (pooled_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) diff --git a/mftcoder_accelerate/src/model/deepseek_v2/tokenization_deepseek_fast.py b/mftcoder_accelerate/src/model/deepseek_v2/tokenization_deepseek_fast.py new file mode 100644 index 0000000..d243771 --- /dev/null +++ b/mftcoder_accelerate/src/model/deepseek_v2/tokenization_deepseek_fast.py @@ -0,0 +1,38 @@ +from typing import List, Optional, Union + + +from transformers.models.llama import LlamaTokenizerFast + + +class DeepseekTokenizerFast(LlamaTokenizerFast): + + def convert_ids_to_tokens( + self, ids: Union[int, List[int]], skip_special_tokens: bool = False + ) -> Union[str, List[str]]: + """ + Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary and + added tokens. + + Args: + ids (`int` or `List[int]`): + The token id (or token ids) to convert to tokens. + skip_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not to remove special tokens in the decoding. + + Returns: + `str` or `List[str]`: The decoded token(s). + """ + if isinstance(ids, int): + return self._convert_id_to_token(ids) + tokens = [] + for index in ids: + index = int(index) + if skip_special_tokens and index in self.all_special_ids: + continue + token = self._tokenizer.id_to_token(index) + tokens.append(token if token is not None else "") + return tokens + + def _convert_id_to_token(self, index: int) -> Optional[str]: + token = self._tokenizer.id_to_token(int(index)) + return token if token is not None else "" diff --git a/mftcoder_accelerate/src/mpt/mpt_accelerate.py b/mftcoder_accelerate/src/mpt/mpt_accelerate.py new file mode 100644 index 0000000..5d187c9 --- /dev/null +++ b/mftcoder_accelerate/src/mpt/mpt_accelerate.py @@ -0,0 +1,494 @@ +""" +# @author Chaoyu Chen +# @date 2024年6月1日 +# @module mpt_accelerate.py + +Accelerate + DeepSpeed + Full-parameter + Multi-task + Pre-training/Continue Training/Finetuning + +Entry +""" + +import os +import sys +import argparse +import math +import logging +import json +import time +from tqdm.auto import tqdm +import transformers +import numpy as np +import torch +from torch import nn +from dataclasses import dataclass +from datasets import Dataset +import datasets +from torch.utils.data import DataLoader +from torch.distributed.fsdp.fully_sharded_data_parallel import FullOptimStateDictConfig, FullStateDictConfig + +from transformers import ( + AutoModelForCausalLM, + AutoTokenizer, + get_linear_schedule_with_warmup, + set_seed, + BitsAndBytesConfig, + get_scheduler, +) + +from accelerate import Accelerator, DistributedType, FullyShardedDataParallelPlugin, DataLoaderConfiguration +from accelerate.logging import get_logger +from datetime import timedelta +from accelerate.utils import InitProcessGroupKwargs +from transformers.optimization import Adafactor + +# insert src as import path +current_path = os.path.abspath(__file__) +parent_dir = os.path.dirname(os.path.dirname(current_path)) +sys.path.insert(0, parent_dir) + +from tokenizer import build_tokenizer +from data.multi_task_dataset import load_dataset_from_jsonl, compile_helper +from data.data_utils import load_dataset_from_bin +from utils.common_utils import print_rank_0, generate_task_id, TASK2ID, ID2TASK +from mpt.mpt_trainer import MptTrainer +from mpt.mpt_arguments import MptTrainArgs +from utils.model_mapping import MODEL_TYPES, SUPPORT_IN_TRANSFORMERS + + +logger = get_logger(__name__) + + +def get_task_mask(args, task_id): + task_num = len(TASK2ID) + task_mask = torch.zeros(task_id.shape[0], task_num) + task_mask[torch.arange(task_id.size(0)).unsqueeze(1), task_id] = 1 + + return task_mask + + +def get_attention_mask_and_position_ids(data): + """Build masks and position id for left to right model.""" + + # Extract batch size and sequence length. + batch_size, seq_length = data.size() + + attention_mask = torch.ones((batch_size, seq_length), device=data.device) + + # Position ids. + position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device) + position_ids = position_ids.unsqueeze(0).expand_as(data).clone() + + return attention_mask, position_ids + + +@dataclass +class DataCollatorForMFTDataset(object): + args: None + + def __call__(self, instances): + (input_ids, loss_mask, weights, task_id) = tuple( + [instance.get(key, None) for instance in instances] + for key in ("input_ids", "loss_mask", "weight", "task_id") + ) + + result_batch = {} + """ + outputs = model( + input_ids=batch['input_ids'], + attention_mask=batch['attention_mask'], + # labels=(batch['labels'], batch['loss_mask'], batch['task_mask']), + # labels=(batch['labels'], batch['loss_mask']), + position_ids=batch['position_ids']) + """ + + # if loss_mask is not None: + loss_mask = torch.tensor(np.array(loss_mask)).long() + last_one_pos = (loss_mask == 1).long().cumsum(dim=1).argmax(dim=1) + if self.args.use_dynamic_padding: + # get last non-padding position + max_pos = last_one_pos.max().item() + 1 + else: + max_pos = loss_mask.shape[-1] + + if self.args.tokenize_mode == "sst" and self.args.padding_mode == "pack": + # 兼容sst + pack tokenization, 最后一位是脏数据,需要去掉 + result_batch["loss_mask"] = loss_mask.float()[:, 1 : max_pos - 1].contiguous() + input_ids = torch.tensor(np.array(input_ids)).long() + result_batch["input_ids"] = input_ids[:, : max_pos - 2].contiguous() + result_batch["labels"] = input_ids[:, 1 : max_pos - 1].contiguous() + else: + result_batch["loss_mask"] = loss_mask.float()[:, 1:max_pos].contiguous() + input_ids = torch.tensor(np.array(input_ids)).long() + # print(f"shape of input_ids: {input_ids.shape}") + result_batch["input_ids"] = input_ids[:, : max_pos - 1].contiguous() + result_batch["labels"] = input_ids[:, 1:max_pos].contiguous() + + # Get the masks and position ids. + + # if you want to be compatible with non-gpt models, something you can do here + if self.args.model_type in ["antglm"]: + (result_batch["attention_mask"], result_batch["position_ids"]) = get_attention_mask_and_position_ids( + data=result_batch["input_ids"] + ) + elif self.args.model_type in ["mixtral", "mtx-qwen2", "qwen2_moe"]: + batch_size, seq_length = result_batch["input_ids"].shape + # bsz * seq_length + range_tensor = torch.arange(seq_length).unsqueeze(0).repeat(batch_size, 1) + # attention_mask for padding tokens + attention_mask = (range_tensor <= last_one_pos.reshape(batch_size, 1)).long() + result_batch["attention_mask"], result_batch["position_ids"] = attention_mask, None + else: + # For decoder-only models, transformers will create them. + result_batch["attention_mask"], result_batch["position_ids"] = None, None + + if task_id is not None: + task_id = torch.tensor(np.array(task_id)) + result_batch["task_mask"] = get_task_mask(self.args, task_id) # bsz * task_num + result_batch["task_id"] = task_id + + return result_batch + + +def pprint_args(args, accelerator): + # 计算所有键的最大字符串长度 + max_key_length = max(len(str(key)) for key in vars(args).keys()) + + message = "" + message += "====" * 60 + "\n" + message += "\n".join([f"{k:<{max_key_length}} : {v}" for k, v in vars(args).items()]) + "\n" + message += "====" * 60 + "\n" + accelerator.print(message) + accelerator.print("GPU: {}".format(torch.cuda.current_device())) + + +def prepare_args(): + parser = argparse.ArgumentParser() + parser.add_argument("--train_config", type=str, default=None) + + parser.add_argument("--data_paths", type=str, default=None) + parser.add_argument("--output_dir", type=str, default=None) + parser.add_argument("--tb_dir", type=str, default=None) + parser.add_argument("--pretrained_model_path", type=str, default=None) + parser.add_argument("--micro_batch_size", type=int, default=None) + parser.add_argument("--model_type", type=str, default=None) + parser.add_argument("--distributed_type", type=str, default="deepspeed") + + parsed = parser.parse_args() + # get json configs + with open(parsed.train_config, "r") as f: + train_config = json.load(f) + + # parse args from cofig.json + # args = argparse.Namespace(**train_config) + args = MptTrainArgs(**train_config) + + # override args by cli arguments + if parsed.data_paths: + args.data_paths = parsed.data_paths + if parsed.output_dir: + args.output_dir = parsed.output_dir + if parsed.tb_dir: + args.tb_dir = parsed.tb_dir + if parsed.pretrained_model_path: + args.pretrained_model_path = parsed.pretrained_model_path + args.vocab_file = parsed.pretrained_model_path + if parsed.micro_batch_size: + args.per_device_train_batch_size = parsed.micro_batch_size + args.per_device_eval_batch_size = parsed.micro_batch_size + if parsed.model_type: + args.model_type = parsed.model_type + + args.distributed_type = parsed.distributed_type + + # refactor args + + args.vocab_file = args.pretrained_model_path + + args.data_weights = "[" + ",".join(["1."] * len(args.data_paths[1:-1].split(","))) + "]" + + # generate TASK2ID, ID2TASK + generate_task_id(args.data_paths) + + if args.weighted_loss_mode == "coba": + args.task_weights = [1.0] * len(ID2TASK) + elif args.task_weights is not None: + args.task_weights = [float(wt) for wt in args.task_weights[1:-1].split(",")] + assert len(args.task_weights) == len(ID2TASK), f"length of task_weights must equal to length of data_paths" + else: + args.task_weights = [1.0] * len(ID2TASK) + + return args + + +def main(): + t0 = time.time() + os.environ["TOKENIZERS_PARALLELISM"] = "false" + os.environ["HF_HUB_OFFLINE"] = "false" + # get input args, set TASK2ID, ID2TASK, refactor args + args = prepare_args() + + # fix randomness + if args.seed is not None: + set_seed(args.seed) + + # define accelerator + init_process_kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=args.init_timeout_seconds)) + + if args.distributed_type and args.distributed_type.lower() == "fsdp": + fsdp_plugin = FullyShardedDataParallelPlugin( + # state_dict_config=FullStateDictConfig(offload_to_cpu=True, rank0_only=True), + # optim_state_dict_config=FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=True), + limit_all_gathers=True, + sync_module_states=True, + use_orig_params=True, + cpu_offload=False, + ) + accelerator = Accelerator( + gradient_accumulation_steps=args.gradient_accumulation_steps, + fsdp_plugin=fsdp_plugin, + dataloader_config=DataLoaderConfiguration(use_seedable_sampler=True), + kwargs_handlers=[init_process_kwargs], + ) + else: + accelerator = Accelerator( + gradient_accumulation_steps=args.gradient_accumulation_steps, + dataloader_config=DataLoaderConfiguration(use_seedable_sampler=True), + kwargs_handlers=[init_process_kwargs], + ) + + # print key infos + accelerator.print("In mft_accelerate.py, sys path:", sys.path) + accelerator.print(f"transformers.__version__: {transformers.__version__}") + + # get world_size + args.world_size = accelerator.num_processes + + # backup args + pprint_args(args, accelerator) + if accelerator.is_main_process: + if not os.path.exists(args.output_dir): + os.makedirs(args.output_dir) + with open(os.path.join(args.output_dir, "args.json"), "w") as f: + json.dump(args.dict(), f, indent=2) + + # deal with autoresume, args.resume_from_checkpoint prior to auto_resume from latest + latest = None + if os.path.exists(os.path.join(args.output_dir, "latest")): + with open(os.path.join(args.output_dir, "latest"), "r") as fl: + latest = json.load(fl) + accelerator.print(f"[INFO] Existing latest: {latest}") + + if args.auto_resume and args.resume_from_checkpoint is None and latest: + args.resume_from_checkpoint = latest["latest_ckpt"] + + # logger + logging.basicConfig( + format="[%(asctime)s][%(levelname)s][%(name)s]%(message)s", + datefmt="%m/%d/%Y %H:%M:%S", + level=logging.INFO, + ) + logger.info(accelerator.state, main_process_only=False) + if accelerator.is_local_main_process: + datasets.utils.logging.set_verbosity_warning() + transformers.utils.logging.set_verbosity_info() + # compile Cpp helper + compile_helper() + time.sleep(10) + else: + datasets.utils.logging.set_verbosity_error() + transformers.utils.logging.set_verbosity_error() + + # get global_rank and local rank for current process + global_rank = accelerator.process_index + local_rank = accelerator.local_process_index + print(f"world_size: {args.world_size}, global_rank: {global_rank}, local_rank: {local_rank}") + + # TASK2ID, ID2TASK + # generate_task_id(args.data_paths) + + # multi task blendable dataset(sharded) + if args.load_raw_dataset: + print_rank_0("> load raw jsonl dataset") + train_dataset, valid_dataset = load_dataset_from_jsonl( + args=args, shard_data=True, world_size=args.world_size, global_rank=global_rank, local_rank=local_rank + ) + else: + print_rank_0("> load tokenized bin dataset, refer to gpt_neox indexed dataset") + train_dataset, valid_dataset, _ = load_dataset_from_bin(args=args) + + t1 = time.time() + logger.info(f"dataset loading time: {t1 - t0:.4f}") + + # cuda memory + free_in_GB = int(torch.cuda.mem_get_info()[0] / 1024**3) + max_memory = f"{free_in_GB - 2}GB" + n_gpus = torch.cuda.device_count() + max_memory = {i: max_memory for i in range(n_gpus)} + accelerator.print("max memory: ", max_memory, n_gpus) + + # # 是否要加入新的special tokens + # num_added_toks = tokenizer.tokenizer.add_special_tokens(["", " "]) + # accelerator.print("We have added", num_added_toks, "tokens") + # accelerator.print(f"role marker tokens {tokenizer.convert_tokens_to_ids(' ')} {tokenizer.convert_tokens_to_ids(' ')}, resized tokenizer_size: {len(tokenizer)}") + + # creating model + ModelClass = MODEL_TYPES[args.model_type] + if args.model_type in SUPPORT_IN_TRANSFORMERS: + accelerator.print(f"[INFO] Model Type {args.model_type} is supported by Transformers") + model = ModelClass.from_pretrained( + args.pretrained_model_path, + attn_implementation=args.attn_implementation, + torch_dtype=torch.bfloat16, + ) + else: + accelerator.print(f"[INFO] Model Type {args.model_type} is supported in our local model dir for remote code") + model = ModelClass.from_pretrained( + args.pretrained_model_path, + torch_dtype=torch.bfloat16, + ) + + # build a tokenizer for possible resizing or saving + tokenizer = build_tokenizer(args) + # Note: resize_token_embeddings expects to receive the full size of the new vocabulary, + # i.e. the length of the tokenizer. + # 如果新增special tokens, 需要resize input embedding 和output embedding + # model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=32) + + model.gradient_checkpointing_enable() + + if args.saving_limit is None or not isinstance(args.saving_limit, int) or args.saving_limit < 1: + # saving_limit is set automatically if needed + args.saving_limit = 2 + accelerator.print( + "[WARNING]saving_limit must be a integer greater than 1 in Full-Parameters Training, we set it to 2" + ) + + t2 = time.time() + if accelerator.is_main_process: + logging.info(f"model loading time: {t2 - t1:.4f}") + + model.config.use_cache = False # silence the warnings. Please re-enable for inference! + if hasattr(model.config, "use_logn_attn"): + model.config.use_logn_attn = False # special for qwen model + # load balance for moe training + if hasattr(model.config, "output_router_logits"): + model.config.output_router_logits = True + model_config = model.config + accelerator.print(model.config) + + # dataloader + train_dataloader = DataLoader( + train_dataset, + shuffle=True, + collate_fn=DataCollatorForMFTDataset(args), + batch_size=args.per_device_train_batch_size, + pin_memory=True, + drop_last=True, + ) + if valid_dataset: + valid_dataloader = DataLoader( + valid_dataset, + collate_fn=DataCollatorForMFTDataset(args), + batch_size=args.per_device_eval_batch_size, + pin_memory=True, + drop_last=True, + ) + else: + valid_dataloader = None + + # optimizer + if accelerator.distributed_type == DistributedType.DEEPSPEED: + accelerator.print("DISTRIBUTED TRAINING USING DEEPSPEED") + # from deepspeed.ops.adam import FusedAdam as Adam + # adam_optimizer = Adam + adam_optimizer = torch.optim.AdamW + elif accelerator.distributed_type == DistributedType.FSDP: + accelerator.print("DISTRIBUTED TRAINING USING FSDP") + model = accelerator.prepare(model) + adam_optimizer = torch.optim.AdamW + else: + raise ValueError("Only support DeepSpeed and FSDP") + + optimizer = adam_optimizer( + model.parameters(), + weight_decay=args.weight_decay, + lr=args.learning_rate, + betas=(0.9, 0.999), + ) + # for group in optimizer.param_groups: + # group.setdefault("initial_lr", group["lr"]) + + # Scheduler and math around the number of training steps. + overrode_max_train_steps = False + num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) + if args.max_train_steps is None: + args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch + overrode_max_train_steps = True + if isinstance(args.num_warmup_steps, float) and args.num_warmup_steps < 1.0: + args.num_warmup_steps = int(args.max_train_steps * args.num_warmup_steps) // accelerator.num_processes + accelerator.print(f"num_warmup_steps: {args.num_warmup_steps}") + lr_scheduler = get_scheduler( + name=args.lr_scheduler_type, + optimizer=optimizer, + num_warmup_steps=args.num_warmup_steps * args.gradient_accumulation_steps * accelerator.num_processes, + num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, + # scheduler_specific_kwargs={"last_epoch": scheduler_last_ep} + ) + # prepare all + if accelerator.distributed_type == DistributedType.DEEPSPEED: + if valid_dataloader: + (model, train_dataloader, valid_dataloader, optimizer, lr_scheduler) = accelerator.prepare( + model, train_dataloader, valid_dataloader, optimizer, lr_scheduler + ) + else: + (model, train_dataloader, optimizer, lr_scheduler) = accelerator.prepare( + model, train_dataloader, optimizer, lr_scheduler + ) + + # prepare all except model, which is prepared before + elif accelerator.distributed_type == DistributedType.FSDP: + if valid_dataloader: + (optimizer, train_dataloader, valid_dataloader, lr_scheduler) = accelerator.prepare( + optimizer, train_dataloader, valid_dataloader, lr_scheduler + ) + else: + (optimizer, train_dataloader, lr_scheduler) = accelerator.prepare( + optimizer, train_dataloader, lr_scheduler + ) + print(model.device) + accelerator.print(model) + # accelerator.print(model.config) + + # Recalculate our total training steps as the size of the training dataloader may have changed. + num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) + if overrode_max_train_steps: + args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch + # Afterward we recalculate our number of training epochs + args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) + + # zero 3 flag + is_ds_zero_3 = False + if getattr(accelerator.state, "deepspeed_plugin", None): + is_ds_zero_3 = accelerator.state.deepspeed_plugin.zero_stage == 3 + accelerator.print(f"DEEPSPEED plugin: {accelerator.state.deepspeed_plugin}") + elif getattr(accelerator.state, "fsdp_plugin", None): + accelerator.print(f"FSDP plugin: {accelerator.state.fsdp_plugin}") + + trainer = MptTrainer( + accelerator=accelerator, + model=model, + model_config=model_config, + train_dataloader=train_dataloader, + valid_dataloader=valid_dataloader, + optimizer=optimizer, + lr_scheduler=lr_scheduler, + tokenizer=tokenizer, + num_update_steps_per_epoch=num_update_steps_per_epoch, + total_train_dataset_size=len(train_dataset), + args=args, + ) + trainer.accelerate_train() + + +if __name__ == "__main__": + main() diff --git a/mftcoder_accelerate/src/mpt/mpt_arguments.py b/mftcoder_accelerate/src/mpt/mpt_arguments.py new file mode 100644 index 0000000..8045421 --- /dev/null +++ b/mftcoder_accelerate/src/mpt/mpt_arguments.py @@ -0,0 +1,161 @@ +""" +# @author Chaoyu Chen +# @date 2024/6/1 + +MPT training arguments +""" + +from dataclasses import dataclass, asdict +from typing import List, Union + + +@dataclass +class MptTrainArgs: + # train data paths on shared FS + data_paths: Union[str, List[str]] + + # output dir for saving adaptors in peft or full ckpts in full-parameter training + output_dir: str + + # tensorboard dir for saving tensorboard logs + tb_dir: str + + # pretrained_model_path, on which is the model you want to train + pretrained_model_path: str + + # model type of pretrained_model_path, support llama|qwen|starcoder|baichuan|chatglm2 + model_type: str + + # load from raw jsonl file or tokenized binary file + load_raw_dataset: bool = True + + # weights of loss calculation for each task, None means equal weights + task_weights: Union[None, str] = None + + # weights of data sampling, leave it None + data_weights: Union[None, str] = None + + # hf loading model low_cpu_mem_usage + low_cpu_mem_usage: bool = True + + # train/valid/test split + data_split: str = "98,2,0" + + # padding or pack or concat + padding_mode: str = "padding" + + # sft or sst + tokenize_mode: str = "sft" + + # case3 or case4 + weighted_loss_mode: str = "case3" + + # mircro train batch size + per_device_train_batch_size: int = 8 + + # micro eval batch size, always same as micro train batch size + per_device_eval_batch_size: int = 8 + + # HF AutoTokenizer is supported, maybe more types + tokenizer_type: str = "AutoTokenizer" + + # initial lr + learning_rate: float = 5e-5 + + # minimum lr + min_lr: float = 5e-6 + + # weight decay + weight_decay: float = 0.01 + + # gradient_accumulation_steps + gradient_accumulation_steps: int = 1 + + # lr_scheduler_type + lr_scheduler_type: str = "cosine" + + # num_warmup_steps + num_warmup_steps: Union[int, float] = 0.05 + + # num_train_epochs + num_train_epochs: int = 4 + + # seed for reproducing + seed: int = 1234 + + # seq_length, context length + seq_length: int = 4096 + + # path of adaptor which is resumed from, None for not resuming training + resume_from_checkpoint: Union[None, str] = None + + # auto resume from latest ckpt if job restarted + auto_resume: bool = True + + # num of steps for logging training loss + log_interval: int = 10 + + # num of steps for saving ckpt + checkpointing_steps: int = 100 + + # num of steps for evaluation(eval_loss), better same as checkpointing steps + evaluation_steps: int = 100 + + # max train steps, if None, depends on num_train_epochs + max_train_steps: Union[None, int] = None + + # if checkpointing every epoch, maybe True in sst + epoch_checkpointing: bool = False + + # save transformers model(safetensors) + save_transformers_model: bool = False + + # shuffle before train/valid split + shuffle_before_split: bool = True + + # DDP random sampler + use_random_sampler: bool = True + + # if early stop when eval loss is not converging in the past early_stopping_stall_num evaluation point + early_stopping: bool = True + early_stopping_stall_num: int = 5 + + # limit num for saving ckpts, None for no limits. Used for full-parameter training to avoid exceeding disk quota. + saving_limit: Union[None, int] = None + + # if dynamic padding + use_dynamic_padding: bool = True + + # warm-up steps for CoBa, recommand the number of valid batches + coba_warmup_steps: int = 100 + # history length of sample valid loss used to fit the slope curve in CoBa, recommand [2*coba_warmup_steps,5*coba_warmup_steps] + coba_history_length: int = 200 + # temperature for divergence factor in CoBa + coba_tau: int = 5 + # iteration interval of update per task train weight in CoBa + coba_update_interval: int = 1 + # the number of mini valid batches sampled at each updated iteration interval + coba_sample_valid_num: int = 1 + + # ATTENTION_CLASSES = { "eager": Normal Attention, "flash_attention_2": FlashAttention2} + attn_implementation: str = "flash_attention_2" + + # role markers, which are prompt template before each role: system, user and assistant + # role_markers: {"system": "### System:\n", "user": "### Instruction:\n", "assistant": "### Response:\n"} + role_markers: Union[None, dict] = None + + distributed_type: Union[None, str] = None + + init_timeout_seconds: Union[None, int] = 3600 + + # legacy, leave them + use_xformers: bool = True + trust_remote_code: bool = True + weight_by_num_documents: bool = True + make_vocab_size_divisible_by: int = 32 + model_parallel_size: int = 1 + use_slow_tokenizer: bool = False + world_size: int = 8 + + def dict(self): + return {k: str(v) for k, v in asdict(self).items()} diff --git a/mftcoder_accelerate/src/mpt/mpt_trainer.py b/mftcoder_accelerate/src/mpt/mpt_trainer.py new file mode 100644 index 0000000..b5e2da8 --- /dev/null +++ b/mftcoder_accelerate/src/mpt/mpt_trainer.py @@ -0,0 +1,606 @@ +""" +# @author qumu +# @date 2024/6/6 +# @module mpt_trainer.py + +MPT/MCT/MFT Full-parameter Trainer +""" + +import gc +import os +import sys +import threading +import argparse +import math +import logging +import json +import time +import transformers +import numpy as np +import psutil +import shutil +import torch +from torch import nn +from torch.utils.tensorboard import SummaryWriter +from typing import List, Optional, Tuple, Union +from tqdm.auto import tqdm +from accelerate.logging import get_logger +from accelerate import Accelerator +from transformers import set_seed + +# sys.path.append("..") +from utils.common_utils import generate_task_id, TASK2ID, ID2TASK +from utils.loss_utils import loss_func_mft, CoBaStatus, load_balancing_loss_func + +logger = get_logger(__name__) + + +def copy_tokenizer_files(mode_path: str, files_list: List[str], save_path: str): + # create path if not exist + if not os.path.exists(save_path): + os.makedirs(save_path) + + # copy each file in files_list to save_path + for filename in files_list: + src_file = os.path.join(mode_path, filename) + + # copy only if src exists + if os.path.exists(src_file): + dest_file = os.path.join(save_path, filename) + + # copy + shutil.copy(src_file, dest_file) + print(f"Copied {filename} to {save_path}") + else: + print(f"File {filename} does not exist in {mode_path}") + + +def check_existing_ckpts(output_dir): + prefix = "step_" + + if not os.path.exists(output_dir): + return [] + # list all files and dirs + contents = os.listdir(output_dir) + + # find dirs starts with "step_" + matching_folders = [ + folder for folder in contents if os.path.isdir(os.path.join(output_dir, folder)) and folder.startswith(prefix) + ] + + return matching_folders + + +def extract_epochs_and_steps(path, num_update_steps_per_epoch, gradient_accumulation_steps): + """ + extract starting_epoch, completed_steps, resume_step of train_dataloader for resumed training + """ + # Extract `epoch_{i}` or `step_{i}` + training_difference = os.path.splitext(path)[0] + + if "epoch" in training_difference: + starting_epoch = int(training_difference.replace("epoch_", "")) + resume_step = None + completed_steps = starting_epoch * num_update_steps_per_epoch + logger.info(f"Resume from exact Epoch {starting_epoch}: completed_steps {completed_steps}") + else: + # need to multiply `gradient_accumulation_steps` to reflect real steps + completed_steps = int(training_difference.replace("step_", "")) + starting_epoch = completed_steps // num_update_steps_per_epoch + resume_step = (completed_steps % num_update_steps_per_epoch) * gradient_accumulation_steps + logger.info(f"Resume from Epoch {starting_epoch} + step {resume_step}: completed_steps {completed_steps}") + + return starting_epoch, completed_steps, resume_step + + +def write_tensorboard(summary_writer: SummaryWriter, log_dict: dict, completed_steps): + for key, value in log_dict.items(): + summary_writer.add_scalar(f"{key}", value, completed_steps) + + +def delete_ckpts_over_limits(output_dir, saving_limit, best_step): + """delete ckpts more than saving_limits except for the best_step ckpt""" + existing_ckpts = check_existing_ckpts(output_dir) + logger.info(f"Existing step ckpts folders: {existing_ckpts}, best step ckpt: step_{best_step}") + # sorted only step num ascendingly + ckpt_steps = sorted([int(ckpt.replace("step_", "")) for ckpt in existing_ckpts]) + # delete the oldest steps except for the best step at present + if len(ckpt_steps)> saving_limit: + deletable_steps = [ckpt_step for ckpt_step in ckpt_steps if ckpt_step != best_step] + # print(deletable_steps[:len(ckpt_steps) - saving_limit]) + for del_step in deletable_steps[: len(ckpt_steps) - saving_limit]: + shutil.rmtree(os.path.join(output_dir, f"step_{del_step}")) + logger.info(f"Removed ckpt step_{del_step}") + + +class MptTrainer: + """ + Multitask Pre-train/Continue-train Trainer with Full-parameters training. + """ + + def __init__( + self, + accelerator: Accelerator, + model, + model_config, + train_dataloader, + valid_dataloader, + optimizer, + lr_scheduler, + tokenizer, + num_update_steps_per_epoch, + total_train_dataset_size, + args, + ): + self.accelerator = accelerator + self.model = model + # hf model config + self.model_config = model_config + self.train_dataloader = train_dataloader + self.valid_dataloader = valid_dataloader + self.optimizer = optimizer + self.lr_scheduler = lr_scheduler + self.tokenizer = tokenizer + self.num_update_steps_per_epoch = num_update_steps_per_epoch + self.total_train_dataset_size = total_train_dataset_size + # training arguments + self.args = args + # tensorboard writer + self.summary_writer = SummaryWriter(log_dir=args.tb_dir) + + def print(self, msg: str): + """ + accelerator print, default on main process + Args: + msg: + + Returns: + + """ + self.accelerator.print(msg) + + def touch(self, batch, num_tokens=10): + """touch first and last tokens and labels for debugging usage""" + self.print( + f"step 1 batch shape: {batch['input_ids'].shape},\n" + f"last {num_tokens} labels: {batch['labels'][:, -num_tokens:]}" + f"last {num_tokens} loss mask: {batch['loss_mask'][:, -num_tokens:]}" + ) + self.print(f"first {num_tokens} input_ids and loss_mask") + for pt in range(1): + self.print(f"{batch['input_ids'][:, num_tokens * pt: num_tokens * pt + num_tokens]}") + self.print(f"{batch['loss_mask'][:, num_tokens * pt: num_tokens * pt + num_tokens]}") + + @staticmethod + def format_tensor(tensor, n): + return list(map(lambda x: round(x, n), tensor.tolist())) + + def accelerate_saving_states(self, output_dir: str, completed_steps: int): + """ + Saving lora adaptor or full checkpoint using accelerator + Args: + output_dir: exact dir for saving ckpt + completed_steps: + + Returns: + + """ + self.accelerator.wait_for_everyone() + logger.info(f"[CHECKPOINT] Saving checkpoint states") + self.accelerator.save_state(output_dir) + self.accelerator.wait_for_everyone() + + # save safetensors for direct inference if needed + if self.args.save_transformers_model: + logger.info(f"[CHECKPOINT] Saving transformers(hf) model", main_process_only=True) + unwrapped_model = self.accelerator.unwrap_model(self.model) + # self.print(f"unwrapped model type {type(unwrapped_model)}") + unwrapped_model.save_pretrained( + output_dir, + is_main_process=self.accelerator.is_main_process, + save_function=self.accelerator.save, + state_dict=self.accelerator.get_state_dict(self.model), + ) + self.accelerator.wait_for_everyone() + + # tokenizer saving and bug dummy ckpt cleaning. + if self.accelerator.is_main_process: + if self.args.model_type.lower() == "deepseek": + copy_tokenizer_files( + self.args.pretrained_model_path, ["tokenizer.json", "tokenizer_config.json"], output_dir + ) + else: + self.tokenizer.save_pretrained(output_dir) + + sf = os.path.join(output_dir, "model.safetensors") + index_file = os.path.join(output_dir, "model.safetensors.index.json") + if os.path.isfile(sf) and os.path.isfile(index_file): + self.print(f"Remove bug dummy ckpt {sf}") + os.remove(sf) + + # save latest info + if self.accelerator.is_main_process: + latest = { + "latest_ckpt": output_dir, + "lr": self.optimizer.param_groups[0]["lr"], + } + with open(os.path.join(self.args.output_dir, "latest"), "w") as f: + json.dump(latest, f, indent=2) + + logger.info( + f"[CHECKPOINT][complete_steps={completed_steps}], states {output_dir} saved, latest: {latest}", + main_process_only=True, + ) + self.accelerator.wait_for_everyone() + + def accelerate_monitor( + self, + reduce_loss, + reduce_task_loss, + reduce_task_exist, + completed_steps, + coba_status=None, + ): + """ + gather reduce_loss and reduce_task_loss from all N devices. + train logging and tensorboarding. + """ + # gather reduce_loss and reduce_task_loss from all N devices + reduce_losses = self.accelerator.gather(reduce_loss).detach().float() + reduce_task_losses = self.accelerator.gather(reduce_task_loss).reshape(-1, len(ID2TASK)) + reduce_task_exists = self.accelerator.gather(reduce_task_exist).reshape(-1, len(ID2TASK)) + + # get train loss and per-task train loss + train_loss = torch.mean(reduce_losses) / (self.args.log_interval * self.args.gradient_accumulation_steps) + # train_task_loss = torch.mean(reduce_task_losses, dim=0) / (self.args.log_interval * self.args.gradient_accumulation_steps) + train_task_loss = torch.sum(reduce_task_losses, dim=0) / torch.sum(reduce_task_exists, dim=0) + + # logging and writing tensorboard + logger.info( + f"[TRAIN][complete_steps={completed_steps}][train_loss={train_loss:.6f}]" + f"[train_task_loss={self.format_tensor(train_task_loss, 4)}]" + f"[gather shape={list(reduce_losses.shape)}]" + f"[lr={self.lr_scheduler.get_lr()[0]:.4e}, {self.optimizer.param_groups[0]['lr']:.4e}]", + main_process_only=True, + ) + if coba_status is not None: + if completed_steps> coba_status.coba_warmup_steps: + coba_status.log_per_task_weight = coba_status.log_per_task_weight / torch.sum( + coba_status.log_per_task_weight + ) + else: + coba_status.log_per_task_weight = torch.ones(len(ID2TASK)) / len(ID2TASK) + logger.info( + f"[TRAIN][per_task_train_weight={coba_status.log_per_task_weight}]", main_process_only=True + ) + train_log_dict = {"Loss/train": train_loss} + for i in range(len(ID2TASK)): + train_log_dict[f"{ID2TASK[i]}_loss/train"] = train_task_loss[i] + if coba_status is not None: + train_log_dict[f"{ID2TASK[i]}_coba_weight/train"] = coba_status.log_per_task_weight[i].item() + + if self.accelerator.is_main_process: + write_tensorboard(self.summary_writer, train_log_dict, completed_steps) + + if coba_status is not None: + coba_status.log_per_task_weight = torch.zeros(len(ID2TASK)) + + def accelerate_evaluate( + self, + completed_steps, + step, + min_eval_loss, + stall_num, + best_step, + ): + """ + evaluate the model at current completed_steps on valid_dataloader and gather eval_loss on all devices. + eval logging and tensorboarding. + """ + losses = [] + accumulated_task_loss = torch.zeros(len(ID2TASK)).to(self.model.device) + accumulated_task_exist = torch.zeros(len(ID2TASK)).to(self.model.device) + for valid_step, valid_batch in enumerate(self.valid_dataloader): + with torch.no_grad(): + outputs = self.model( + input_ids=valid_batch["input_ids"], + attention_mask=valid_batch["attention_mask"], + position_ids=valid_batch["position_ids"], + return_dict=True, + ) + + loss, task_loss, _ = loss_func_mft( + outputs=outputs, + labels=valid_batch["labels"], + task_mask=valid_batch["task_mask"], + task_id=valid_batch["task_id"], + weighted_loss_mode=self.args.weighted_loss_mode, + loss_mask=valid_batch["loss_mask"], + task_weights=self.args.task_weights, + ) + + losses.append(self.accelerator.gather(loss.repeat(self.args.per_device_eval_batch_size))) + accumulated_task_loss += task_loss.detach().float() + accumulated_task_exist += (task_loss != 0.0).detach().float() + + self.accelerator.wait_for_everyone() + valid_batch_num = len(losses) + gathered_size = losses[0].shape + losses = torch.cat(losses) + # task_losses = torch.cat(task_losses).reshape(-1, len(ID2TASK)) + task_losses = self.accelerator.gather(accumulated_task_loss).reshape(-1, len(ID2TASK)) + task_exists = self.accelerator.gather(accumulated_task_exist).reshape(-1, len(ID2TASK)) + + try: + eval_loss = torch.mean(losses) + # eval_task_loss = torch.mean(task_losses, dim=0) / valid_batch_num + eval_task_loss = torch.sum(task_losses, dim=0) / torch.sum(task_exists, dim=0) + if eval_loss <= min_eval_loss: + min_eval_loss = eval_loss + stall_num = 0 + best_step = completed_steps + else: + stall_num += 1 + perplexity = math.exp(eval_loss) + except OverflowError: + perplexity = float("inf") + + logger.info( + f"[EVAL][completed_steps={completed_steps}]" + f"[eval_loss={eval_loss:.6f}][eval_task_loss={self.format_tensor(eval_task_loss, 4)}]" + f"[perplexity={perplexity:.4f}][valid_batch_num={valid_batch_num}]" + f"[gather_size={list(gathered_size)}]", + main_process_only=True, + ) + eval_log_dict = { + "Loss/valid": eval_loss, + "Perplexity/valid": perplexity, + "Epochs": round(completed_steps / self.num_update_steps_per_epoch, 2), + } + for i in range(len(ID2TASK)): + eval_log_dict[f"{ID2TASK[i]}_loss/valid"] = eval_task_loss[i] + + if self.accelerator.is_main_process: + write_tensorboard(self.summary_writer, eval_log_dict, completed_steps) + + return eval_loss, eval_task_loss, min_eval_loss, stall_num, best_step + + def accelerate_train(self): + # Train! + if self.args.seed is not None: + set_seed(self.args.seed) + + global_batch_size = ( + self.args.per_device_train_batch_size + * self.accelerator.num_processes + * self.args.gradient_accumulation_steps + ) + logger.info("************************************** Running training ****************************************") + logger.info(f" Num examples = {self.total_train_dataset_size}") + logger.info(f" Num Epochs = {self.args.num_train_epochs}") + logger.info(f" Instantaneous batch size per device = {self.args.per_device_train_batch_size}") + logger.info(f" Total global train batch size (w. parallel, distributed & accumulation) = {global_batch_size}") + logger.info(f" Gradient Accumulation steps = {self.args.gradient_accumulation_steps}") + logger.info(f" Total optimization(update/completed) steps = {self.args.max_train_steps}") + logger.info(f" Complete/optimize steps per Epoch = {self.args.max_train_steps // self.args.num_train_epochs}") + logger.info("************************************************************************************************") + + # Only show the progress bar once on each machine. + progress_bar = tqdm(range(self.args.max_train_steps), disable=not self.accelerator.is_local_main_process) + + # set starting_epoch, completed_steps and resume_step of train_dataloader + completed_steps = 0 + starting_epoch = 0 + resume_step = None + + if self.args.resume_from_checkpoint: + self.accelerator.load_state(self.args.resume_from_checkpoint) + self.accelerator.print(f"Resumed from checkpoint: {self.args.resume_from_checkpoint}") + path = os.path.basename(self.args.resume_from_checkpoint) + starting_epoch, completed_steps, resume_step = extract_epochs_and_steps( + path, self.num_update_steps_per_epoch, self.args.gradient_accumulation_steps + ) + + # update the progress_bar if load from checkpoint + progress_bar.update(completed_steps) + + # monitor minimum eval_loss, stalling num, and best_step + min_eval_loss = float("inf") + stall_num = 0 + best_step = None + + # monitor train loss + reduce_loss = torch.tensor(0.0).to(self.model.device) + reduce_aux_loss = torch.tensor(0.0).to(self.model.device) + reduce_task_loss = torch.zeros(len(ID2TASK)).to(self.model.device) + reduce_task_exist = torch.zeros(len(ID2TASK)).to(self.model.device) + per_task_weight = self.args.task_weights + + if self.args.weighted_loss_mode == "coba": + self.model.eval() + eval_loss, eval_task_loss, _, _, _ = self.accelerate_evaluate( + completed_steps, + 0, + min_eval_loss, + stall_num, + best_step, + ) + self.model.train() + coba_status = CoBaStatus( + self.args.coba_warmup_steps, + self.args.coba_history_length, + self.args.coba_tau, + self.args.coba_update_interval, + self.args.coba_sample_valid_num, + self.valid_dataloader, + ) + coba_status.valid_task_loss_begining = eval_task_loss.clone().to(self.model.device) + coba_status.sample_valid_batch(self.model, completed_steps) + logger.info(f"valid_task_loss: {coba_status.valid_task_loss_accumulated}", main_process_only=True) + else: + coba_status = None + + # Training Loop! + for epoch in range(starting_epoch, self.args.num_train_epochs): + # set_epoch + # self.train_dataloader.set_epoch(epoch) + + # if we early stop by some ckpts not converging + if self.args.early_stopping and stall_num == self.args.early_stopping_stall_num: + break + + if self.args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: + # We skip the first `n` batches in the dataloader when resuming from a checkpoint + active_dataloader = self.accelerator.skip_first_batches(self.train_dataloader, resume_step) + else: + active_dataloader = self.train_dataloader + tail_num = len(active_dataloader) - len(active_dataloader) % self.args.gradient_accumulation_steps + print(f"length of dataloader: {len(active_dataloader)}") + + self.model.train() + # Inner Loop! + for step, batch in enumerate(active_dataloader): + if step == tail_num: + break + with self.accelerator.accumulate(self.model): + if step == 0: + self.touch(batch, num_tokens=10) + # forward + outputs = self.model( + input_ids=batch["input_ids"], + attention_mask=batch["attention_mask"], + position_ids=batch["position_ids"], + return_dict=True, + ) + + if ( + self.args.weighted_loss_mode == "coba" + and self.accelerator.sync_gradients + and completed_steps % self.args.coba_update_interval == 0 + and completed_steps>= self.args.coba_warmup_steps + ): + with torch.no_grad(): + per_task_weight = coba_status.compute_per_task_weight(completed_steps=completed_steps) + coba_status.log_per_task_weight += per_task_weight + # logger.info(f'per_task_weight: {per_task_weight}', main_process_only=True) + + # loss + loss, task_loss, _ = loss_func_mft( + outputs=outputs, + labels=batch["labels"], + task_mask=batch["task_mask"], + task_id=batch["task_id"], + weighted_loss_mode=self.args.weighted_loss_mode, + loss_mask=batch["loss_mask"], + task_weights=per_task_weight, + ) + + # accelerator.print(len(outputs.router_logits), outputs.router_logits[0], outputs.router_logits[-1]) + # accelerator.print(batch['attention_mask'].shape, batch['attention_mask']) + aux_loss = None + if hasattr(self.model_config, "output_router_logits") and self.model_config.output_router_logits: + if hasattr(self.model_config, "num_local_experts"): + num_experts = self.model_config.num_local_experts + elif hasattr(self.model_config, "num_experts"): + num_experts = self.model_config.num_experts + else: + raise ValueError("model has no attribute num_local_experts or num_experts") + aux_loss = load_balancing_loss_func( + outputs.router_logits, + num_experts, + self.model_config.num_experts_per_tok, + batch["attention_mask"], + ) + aux_loss = self.model_config.router_aux_loss_coef * aux_loss.to(loss.device) + loss += aux_loss # make sure to reside in the same device + + # backward + self.accelerator.backward(loss) + # print(self.lr_scheduler.state_dict(), self.accelerator.process_index) + # update(sync_gradients) + self.optimizer.step() + self.lr_scheduler.step() + self.optimizer.zero_grad() + # support args.min_lr + if self.optimizer.param_groups[0]["lr"] <= self.args.min_lr: + self.optimizer.param_groups[0]["lr"] = self.args.min_lr + + # accumulate resuce_loss and reduce_task_loss in a log_interval + if not torch.isnan(loss): + reduce_loss += loss.detach().float() + if aux_loss and not torch.isnan(aux_loss): + reduce_aux_loss += aux_loss.detach().float() + # self.print("task loss devices: ", reduce_task_loss.device, task_loss.device) + reduce_task_loss += task_loss.detach().float() + reduce_task_exist += (task_loss != 0).detach().float() + + # If the accelerator has performed an optimization step behind the scenes, thus a completed_step done. + if self.accelerator.sync_gradients: + if ( + self.args.weighted_loss_mode == "coba" + and completed_steps % self.args.coba_update_interval == 0 + and completed_steps>= 1 + ): + coba_status.sample_valid_batch(self.model, completed_steps) + # logger.info(f"valid_task_loss: {coba_status.valid_task_loss_accumulated}", main_process_only=True) + + # progress_bar.update(1) + completed_steps += 1 + # monitoring training process and logging and tensorboarding + if completed_steps % self.args.log_interval == 0: + progress_bar.update(self.args.log_interval) + if reduce_aux_loss> 0.0: + self.print(f"[INFO] aux_loss: {reduce_aux_loss/self.args.log_interval}") + self.accelerate_monitor( + reduce_loss, + reduce_task_loss, + reduce_task_exist, + completed_steps, + coba_status, + ) + # reset reduce_loss + reduce_loss = torch.tensor(0.0).to(self.model.device) + reduce_aux_loss = torch.tensor(0.0).to(self.model.device) + reduce_task_loss = torch.zeros(len(ID2TASK)).to(self.model.device) + reduce_task_exist = torch.zeros(len(ID2TASK)).to(self.model.device) + + # steps checkpointing + if self.args.checkpointing_steps and completed_steps % self.args.checkpointing_steps == 0: + output_dir = f"step_{completed_steps}" + if self.args.output_dir is not None: + output_dir = os.path.join(self.args.output_dir, output_dir) + self.accelerate_saving_states(output_dir, completed_steps) + + # steps evaluation + if completed_steps % self.args.evaluation_steps == 0 and self.valid_dataloader: + self.model.eval() + eval_loss, eval_task_loss, min_eval_loss, stall_num, best_step = self.accelerate_evaluate( + completed_steps, + step, + min_eval_loss, + stall_num, + best_step, + ) + self.model.train() + + # delete ckpts over args.saving_limit + if self.accelerator.is_main_process and self.args.saving_limit: + delete_ckpts_over_limits(self.args.output_dir, self.args.saving_limit, best_step) + + # early stoppin when stalling more than args.early_stopping_stall_num + if self.args.early_stopping and stall_num == self.args.early_stopping_stall_num: + self.print(f"[WARNING] Early stopping at {completed_steps}") + break + + if completed_steps>= self.args.max_train_steps: + break + self.accelerator.wait_for_everyone() + + # epoch checkpointing + if self.args.epoch_checkpointing: + output_dir = f"epoch_{epoch + 1}" + if self.args.output_dir is not None: + output_dir = os.path.join(self.args.output_dir, output_dir) + self.accelerate_saving_states(output_dir, completed_steps) + + self.summary_writer.close() diff --git a/mftcoder_accelerate/src/offline_tokenization/concat_sst_bin_tokenization.py b/mftcoder_accelerate/src/offline_tokenization/concat_sst_bin_tokenization.py new file mode 100644 index 0000000..ca4347e --- /dev/null +++ b/mftcoder_accelerate/src/offline_tokenization/concat_sst_bin_tokenization.py @@ -0,0 +1,220 @@ +# -*- coding: utf-8 -*- + +import argparse +import multiprocessing +import os +import sys +import random +import time +import tqdm +import glob +import json +import numpy as np + + +# 将父目录的父目录加入path +current_path = os.path.abspath(__file__) +parent_dir = os.path.dirname(os.path.dirname(current_path)) +grandparent_dir = os.path.dirname(parent_dir) +sys.path.append(grandparent_dir) + +from tokenizer import init_tokenizer +from pack_encoder import PackSSTBinEncoder, load_tokenizer +from data import indexed_dataset + +from threading import Semaphore +from colorama import Fore +import lm_fmt as lmd + + +def yield_from_files(files: list, semaphore): + """ + Iterator over input documents + + :param fnames: list of filenames + """ + def yielder(fname, semaphore): + with open(fname, 'r') as f: + for line in f: + semaphore.acquire() + yield json.loads(line) + + for fname in files: + semaphore.acquire() + yield from yielder(fname, semaphore) + +def yield_from_files2(fnames: list, semaphore, sample_percent): + """ + Iterator over input documents using lm_dataformat. Should be able to handle jsons / texts / + other compressed formats. Also filters out empty documents. + + :param fnames: list of filenames + """ + def yielder(fname, semaphore): + try: + sample_interval = int(1/sample_percent) + for f in filter(lambda x: x, lmd.Reader(fname).stream_data(key=None)): + rand_value = random.randint(1, sample_interval*100) + if rand_value % sample_interval != 0: + continue + semaphore.acquire() + + #rand_value = random.randint(1, sample_interval*100) + #if rand_value % sample_interval != 0: + # yield None + + yield f + except Exception as e: + print('####Exception:', e.args) + yield None + + for fname in fnames: + semaphore.acquire() + + yield from yielder(fname, semaphore) + + +def print_example_doc(input_ids, tokenizer): + print(Fore.YELLOW + f'INPUT IDS len: {len(input_ids)}') + print(Fore.BLUE + f'INPUT IDS:\n {input_ids}\n\n') + + print(Fore.RED + f'DETOKENIZED INPUT:\n{tokenizer.decode(input_ids)}') + + +def core_process(encoded_docs, semaphore, seq_length, tokenizer, encoder, builder, output_idx_file): + """ + core of Data Pack SFT processing + """ + input_ids_key = 'input_ids' + + proc_start = time.time() + total_bytes_processed = 0 + pbar = tqdm.tqdm() + sentence_droped = 0 + loss_token_cnt = 0 + + print("PRINT BEFORE STREAM PROCESS DATA") + + print_example_count = 0 + for i, (doc, bytes_processed) in enumerate(encoded_docs, start=1): + total_bytes_processed += bytes_processed + + # release semaphore so `yield_from_files` can add another file to the buffer + semaphore.release() + + # add each tokenized document / sentence, + # For sft, each document has only one sample + input_ids_sentence = doc[input_ids_key][0] + if len(input_ids_sentence) < 1: + sentence_droped += 1 + continue + + builder.add_item(np.array(input_ids_sentence, dtype=builder.dtype)) + builder.end_document() + #builder.finalize_without_close(output_idx_file) + #builder.add_item_and_end_document_and_finalize(np.array(input_ids_sentence, dtype=builder.dtype), output_idx_file) + + # print the first packed sample as example + if print_example_count < 1: + print_example_doc(input_ids_sentence, tokenizer) + print_example_count += 1 + + # log progress + if i % 100 == 0: + current = time.time() + elapsed = current - proc_start + mbs = total_bytes_processed / elapsed / 1024 / 1024 + pbar.set_description( + f"Processed {i} documents ({i / elapsed} docs/s, {mbs} MB/s)." + ) + if i != 0: + pbar.update(100) + + # 尾部处理 + builder.finalize(output_idx_file) + + print(Fore.RED + "\ndroped docs: {}".format(sentence_droped)) + + +def process_dataset(dataset_path, output_path, model_path, parallel_num, seq_length, dataset_name, sample_percent): + """ + Re-organize samples in the given data path into a Data Pack file. + """ + + # get all jsonl files and corresponding reading handler + files = glob.glob(os.path.join(dataset_path, '**/*.jsonl'), recursive=True) + + # build a semaphore object to stop `yield_from_files` from getting ahead + # of encoder.encode and hence building up memory + semaphore = Semaphore(1000 + parallel_num) + + # build sample iterator + sample_iterator = yield_from_files2(files, semaphore, sample_percent) + + # load tokenizer + # tokenizer = load_tokenizer(model_path, tokenizer_type) + tokenizer = init_tokenizer(model_path) + print('TOKEN of id=2:', tokenizer.convert_ids_to_tokens(2)) + print('ID of