Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Avoid log(0) in KL divergence #12233

Open
Open
Labels
@kevin1kevin1k

Description

Repository commit

03a4251

Python version (python --version)

Python 3.10.15

Dependencies version (pip freeze)

absl-py==2.1.0
astunparse==1.6.3
beautifulsoup4==4.12.3
certifi==2024年8月30日
charset-normalizer==3.4.0
contourpy==1.3.0
cycler==0.12.1
dill==0.3.9
dom_toml==2.0.0
domdf-python-tools==3.9.0
fake-useragent==1.5.1
flatbuffers==24.3.25
fonttools==4.54.1
gast==0.6.0
google-pasta==0.2.0
grpcio==1.67.0
h5py==3.12.1
idna==3.10
imageio==2.36.0
joblib==1.4.2
keras==3.6.0
kiwisolver==1.4.7
libclang==18.1.1
lxml==5.3.0
Markdown==3.7
markdown-it-py==3.0.0
MarkupSafe==3.0.2
matplotlib==3.9.2
mdurl==0.1.2
ml-dtypes==0.3.2
mpmath==1.3.0
namex==0.0.8
natsort==8.4.0
numpy==1.26.4
oauthlib==3.2.2
opencv-python==4.10.0.84
opt_einsum==3.4.0
optree==0.13.0
packaging==24.1
pandas==2.2.3
patsy==0.5.6
pbr==6.1.0
pillow==11.0.0
pip==24.2
protobuf==4.25.5
psutil==6.1.0
Pygments==2.18.0
pyparsing==3.2.0
python-dateutil==2.9.0.post0
pytz==2024.2
qiskit==1.2.4
qiskit-aer==0.15.1
requests==2.32.3
requests-oauthlib==1.3.1
rich==13.9.2
rustworkx==0.15.1
scikit-learn==1.5.2
scipy==1.14.1
setuptools==74.1.2
six==1.16.0
soupsieve==2.6
sphinx-pyproject==0.3.0
statsmodels==0.14.4
stevedore==5.3.0
symengine==0.13.0
sympy==1.13.3
tensorboard==2.16.2
tensorboard-data-server==0.7.2
tensorflow==2.16.2
tensorflow-io-gcs-filesystem==0.37.1
termcolor==2.5.0
threadpoolctl==3.5.0
tomli==2.0.2
tweepy==4.14.0
typing_extensions==4.12.2
tzdata==2024.2
urllib3==2.2.3
Werkzeug==3.0.4
wheel==0.44.0
wrapt==1.16.0
xgboost==2.1.1

Expected behavior

The entries where y_true is 0 should be ignored in the summation (see Actual behavior)

Actual behavior

In

kl_loss = y_true * np.log(y_true / y_pred)
return np.sum(kl_loss)
if any entry of y_true is 0, the output of np.log would become -inf and thus the method returns nan.
Maybe it would be better to exclude those entries where y_true is 0?

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

      Relationships

      None yet

      Development

      No branches or pull requests

      Issue actions

        AltStyle によって変換されたページ (->オリジナル) /