Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 68e6146

Browse files
Add files via upload
1 parent 6bafd91 commit 68e6146

File tree

2 files changed

+114
-0
lines changed

2 files changed

+114
-0
lines changed

‎inception5h.pth‎

16.2 MB
Binary file not shown.

‎inception5h.py‎

Lines changed: 114 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,114 @@
1+
import torch
2+
import torch.nn as nn
3+
import torch.nn.functional as F
4+
5+
6+
class Inception5h(nn.Module):
7+
8+
def __init__(self):
9+
super(Inception5h, self).__init__()
10+
self.conv2d0_pre_relu_conv = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=(7, 7), stride=(2, 2), groups=1, bias=True)
11+
self.conv2d1_pre_relu_conv = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=True)
12+
self.conv2d2_pre_relu_conv = nn.Conv2d(in_channels=64, out_channels=192, kernel_size=(3, 3), stride=(1, 1), groups=1, bias=True)
13+
self.mixed3a_1x1_pre_relu_conv = nn.Conv2d(in_channels=192, out_channels=64, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=True)
14+
self.mixed3a_3x3_bottleneck_pre_relu_conv = nn.Conv2d(in_channels=192, out_channels=96, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=True)
15+
self.mixed3a_5x5_bottleneck_pre_relu_conv = nn.Conv2d(in_channels=192, out_channels=16, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=True)
16+
self.mixed3a_pool_reduce_pre_relu_conv = nn.Conv2d(in_channels=192, out_channels=32, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=True)
17+
self.mixed3a_3x3_pre_relu_conv = nn.Conv2d(in_channels=96, out_channels=128, kernel_size=(3, 3), stride=(1, 1), groups=1, bias=True)
18+
self.mixed3a_5x5_pre_relu_conv = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=(5, 5), stride=(1, 1), groups=1, bias=True)
19+
self.mixed3b_1x1_pre_relu_conv = nn.Conv2d(in_channels=256, out_channels=128, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=True)
20+
self.mixed3b_3x3_bottleneck_pre_relu_conv = nn.Conv2d(in_channels=256, out_channels=128, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=True)
21+
self.mixed3b_5x5_bottleneck_pre_relu_conv = nn.Conv2d(in_channels=256, out_channels=32, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=True)
22+
self.mixed3b_pool_reduce_pre_relu_conv = nn.Conv2d(in_channels=256, out_channels=64, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=True)
23+
self.mixed3b_3x3_pre_relu_conv = nn.Conv2d(in_channels=128, out_channels=192, kernel_size=(3, 3), stride=(1, 1), groups=1, bias=True)
24+
self.mixed3b_5x5_pre_relu_conv = nn.Conv2d(in_channels=32, out_channels=96, kernel_size=(5, 5), stride=(1, 1), groups=1, bias=True)
25+
self.mixed4a_1x1_pre_relu_conv = nn.Conv2d(in_channels=480, out_channels=192, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=True)
26+
self.mixed4a_3x3_bottleneck_pre_relu_conv = nn.Conv2d(in_channels=480, out_channels=96, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=True)
27+
self.mixed4a_5x5_bottleneck_pre_relu_conv = nn.Conv2d(in_channels=480, out_channels=16, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=True)
28+
self.mixed4a_pool_reduce_pre_relu_conv = nn.Conv2d(in_channels=480, out_channels=64, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=True)
29+
self.mixed4a_3x3_pre_relu_conv = nn.Conv2d(in_channels=96, out_channels=204, kernel_size=(3, 3), stride=(1, 1), groups=1, bias=True)
30+
self.mixed4a_5x5_pre_relu_conv = nn.Conv2d(in_channels=16, out_channels=48, kernel_size=(5, 5), stride=(1, 1), groups=1, bias=True)
31+
self.head0_bottleneck_pre_relu_conv = nn.Conv2d(in_channels=508, out_channels=128, kernel_size=(1, 1), stride=(1, 1), groups=1, bias=True)
32+
self.nn0_pre_relu_matmul = nn.Linear(in_features = 2048, out_features = 1024, bias = True)
33+
self.softmax0_pre_activation_matmul = nn.Linear(in_features = 1024, out_features = 1008, bias = True)
34+
35+
def forward(self, x):
36+
conv2d0_pre_relu_conv_pad = F.pad(x, (2, 3, 2, 3))
37+
conv2d0_pre_relu_conv = self.conv2d0_pre_relu_conv(conv2d0_pre_relu_conv_pad)
38+
conv2d0 = F.relu(conv2d0_pre_relu_conv)
39+
maxpool0_pad = F.pad(conv2d0, (0, 1, 0, 1), value=float('-inf'))
40+
maxpool0 = F.max_pool2d(maxpool0_pad, kernel_size=(3, 3), stride=(2, 2), padding=0, ceil_mode=False)
41+
localresponsenorm0 = F.local_response_norm(maxpool0, size=9, alpha=9.999999747378752e-05, beta=0.5, k=1)
42+
conv2d1_pre_relu_conv = self.conv2d1_pre_relu_conv(localresponsenorm0)
43+
conv2d1 = F.relu(conv2d1_pre_relu_conv)
44+
conv2d2_pre_relu_conv_pad = F.pad(conv2d1, (1, 1, 1, 1))
45+
conv2d2_pre_relu_conv = self.conv2d2_pre_relu_conv(conv2d2_pre_relu_conv_pad)
46+
conv2d2 = F.relu(conv2d2_pre_relu_conv)
47+
localresponsenorm1 = F.local_response_norm(conv2d2, size=9, alpha=9.999999747378752e-05, beta=0.5, k=1)
48+
maxpool1_pad = F.pad(localresponsenorm1, (0, 1, 0, 1), value=float('-inf'))
49+
maxpool1 = F.max_pool2d(maxpool1_pad, kernel_size=(3, 3), stride=(2, 2), padding=0, ceil_mode=False)
50+
mixed3a_1x1_pre_relu_conv = self.mixed3a_1x1_pre_relu_conv(maxpool1)
51+
mixed3a_3x3_bottleneck_pre_relu_conv = self.mixed3a_3x3_bottleneck_pre_relu_conv(maxpool1)
52+
mixed3a_5x5_bottleneck_pre_relu_conv = self.mixed3a_5x5_bottleneck_pre_relu_conv(maxpool1)
53+
mixed3a_pool_pad = F.pad(maxpool1, (1, 1, 1, 1), value=float('-inf'))
54+
mixed3a_pool = F.max_pool2d(mixed3a_pool_pad, kernel_size=(3, 3), stride=(1, 1), padding=0, ceil_mode=False)
55+
mixed3a_1x1 = F.relu(mixed3a_1x1_pre_relu_conv)
56+
mixed3a_3x3_bottleneck = F.relu(mixed3a_3x3_bottleneck_pre_relu_conv)
57+
mixed3a_5x5_bottleneck = F.relu(mixed3a_5x5_bottleneck_pre_relu_conv)
58+
mixed3a_pool_reduce_pre_relu_conv = self.mixed3a_pool_reduce_pre_relu_conv(mixed3a_pool)
59+
mixed3a_3x3_pre_relu_conv_pad = F.pad(mixed3a_3x3_bottleneck, (1, 1, 1, 1))
60+
mixed3a_3x3_pre_relu_conv = self.mixed3a_3x3_pre_relu_conv(mixed3a_3x3_pre_relu_conv_pad)
61+
mixed3a_5x5_pre_relu_conv_pad = F.pad(mixed3a_5x5_bottleneck, (2, 2, 2, 2))
62+
mixed3a_5x5_pre_relu_conv = self.mixed3a_5x5_pre_relu_conv(mixed3a_5x5_pre_relu_conv_pad)
63+
mixed3a_pool_reduce = F.relu(mixed3a_pool_reduce_pre_relu_conv)
64+
mixed3a_3x3 = F.relu(mixed3a_3x3_pre_relu_conv)
65+
mixed3a_5x5 = F.relu(mixed3a_5x5_pre_relu_conv)
66+
mixed3a = torch.cat((mixed3a_1x1, mixed3a_3x3, mixed3a_5x5, mixed3a_pool_reduce), 1)
67+
mixed3b_1x1_pre_relu_conv = self.mixed3b_1x1_pre_relu_conv(mixed3a)
68+
mixed3b_3x3_bottleneck_pre_relu_conv = self.mixed3b_3x3_bottleneck_pre_relu_conv(mixed3a)
69+
mixed3b_5x5_bottleneck_pre_relu_conv = self.mixed3b_5x5_bottleneck_pre_relu_conv(mixed3a)
70+
mixed3b_pool_pad = F.pad(mixed3a, (1, 1, 1, 1), value=float('-inf'))
71+
mixed3b_pool = F.max_pool2d(mixed3b_pool_pad, kernel_size=(3, 3), stride=(1, 1), padding=0, ceil_mode=False)
72+
mixed3b_1x1 = F.relu(mixed3b_1x1_pre_relu_conv)
73+
mixed3b_3x3_bottleneck = F.relu(mixed3b_3x3_bottleneck_pre_relu_conv)
74+
mixed3b_5x5_bottleneck = F.relu(mixed3b_5x5_bottleneck_pre_relu_conv)
75+
mixed3b_pool_reduce_pre_relu_conv = self.mixed3b_pool_reduce_pre_relu_conv(mixed3b_pool)
76+
mixed3b_3x3_pre_relu_conv_pad = F.pad(mixed3b_3x3_bottleneck, (1, 1, 1, 1))
77+
mixed3b_3x3_pre_relu_conv = self.mixed3b_3x3_pre_relu_conv(mixed3b_3x3_pre_relu_conv_pad)
78+
mixed3b_5x5_pre_relu_conv_pad = F.pad(mixed3b_5x5_bottleneck, (2, 2, 2, 2))
79+
mixed3b_5x5_pre_relu_conv = self.mixed3b_5x5_pre_relu_conv(mixed3b_5x5_pre_relu_conv_pad)
80+
mixed3b_pool_reduce = F.relu(mixed3b_pool_reduce_pre_relu_conv)
81+
mixed3b_3x3 = F.relu(mixed3b_3x3_pre_relu_conv)
82+
mixed3b_5x5 = F.relu(mixed3b_5x5_pre_relu_conv)
83+
mixed3b = torch.cat((mixed3b_1x1, mixed3b_3x3, mixed3b_5x5, mixed3b_pool_reduce), 1)
84+
maxpool4_pad = F.pad(mixed3b, (0, 1, 0, 1), value=float('-inf'))
85+
maxpool4 = F.max_pool2d(maxpool4_pad, kernel_size=(3, 3), stride=(2, 2), padding=0, ceil_mode=False)
86+
mixed4a_1x1_pre_relu_conv = self.mixed4a_1x1_pre_relu_conv(maxpool4)
87+
mixed4a_3x3_bottleneck_pre_relu_conv = self.mixed4a_3x3_bottleneck_pre_relu_conv(maxpool4)
88+
mixed4a_5x5_bottleneck_pre_relu_conv = self.mixed4a_5x5_bottleneck_pre_relu_conv(maxpool4)
89+
mixed4a_pool_pad = F.pad(maxpool4, (1, 1, 1, 1), value=float('-inf'))
90+
mixed4a_pool = F.max_pool2d(mixed4a_pool_pad, kernel_size=(3, 3), stride=(1, 1), padding=0, ceil_mode=False)
91+
mixed4a_1x1 = F.relu(mixed4a_1x1_pre_relu_conv)
92+
mixed4a_3x3_bottleneck = F.relu(mixed4a_3x3_bottleneck_pre_relu_conv)
93+
mixed4a_5x5_bottleneck = F.relu(mixed4a_5x5_bottleneck_pre_relu_conv)
94+
mixed4a_pool_reduce_pre_relu_conv = self.mixed4a_pool_reduce_pre_relu_conv(mixed4a_pool)
95+
mixed4a_3x3_pre_relu_conv_pad = F.pad(mixed4a_3x3_bottleneck, (1, 1, 1, 1))
96+
mixed4a_3x3_pre_relu_conv = self.mixed4a_3x3_pre_relu_conv(mixed4a_3x3_pre_relu_conv_pad)
97+
mixed4a_5x5_pre_relu_conv_pad = F.pad(mixed4a_5x5_bottleneck, (2, 2, 2, 2))
98+
mixed4a_5x5_pre_relu_conv = self.mixed4a_5x5_pre_relu_conv(mixed4a_5x5_pre_relu_conv_pad)
99+
mixed4a_pool_reduce = F.relu(mixed4a_pool_reduce_pre_relu_conv)
100+
mixed4a_3x3 = F.relu(mixed4a_3x3_pre_relu_conv)
101+
mixed4a_5x5 = F.relu(mixed4a_5x5_pre_relu_conv)
102+
mixed4a = torch.cat((mixed4a_1x1, mixed4a_3x3, mixed4a_5x5, mixed4a_pool_reduce), 1)
103+
head0_pool = F.avg_pool2d(mixed4a, kernel_size=(5, 5), stride=(3, 3), padding=(0,), ceil_mode=False, count_include_pad=False)
104+
head0_bottleneck_pre_relu_conv = self.head0_bottleneck_pre_relu_conv(head0_pool)
105+
head0_bottleneck = F.relu(head0_bottleneck_pre_relu_conv)
106+
avgpool_2d = nn.AdaptiveAvgPool2d((4, 4))
107+
x = avgpool_2d(head0_bottleneck)
108+
x = torch.flatten(x, 1)
109+
nn0_pre_relu_matmul = self.nn0_pre_relu_matmul(x)
110+
nn0 = F.relu(nn0_pre_relu_matmul)
111+
nn0_reshape = torch.reshape(input = nn0, shape = (-1,1024))
112+
softmax0_pre_activation_matmul = self.softmax0_pre_activation_matmul(nn0_reshape)
113+
softmax0 = F.softmax(softmax0_pre_activation_matmul)
114+
return softmax0

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /