|  | 
|  | 1 | +Let us consider a monster (D, H) and a unit (d, h).  | 
|  | 2 | + | 
|  | 3 | +Time taken by monster to kill 1 unit = h/D  | 
|  | 4 | +Time taken by unit to kill monster = H/d  | 
|  | 5 | + | 
|  | 6 | +We need to ensure that the time taken by the monster is strictly more than the time we take to kill the monster  | 
|  | 7 | + | 
|  | 8 | +h/D > H/d  | 
|  | 9 | +h*d > H*D  | 
|  | 10 | + | 
|  | 11 | +We can treat all the monsters as products (D x H) | 
|  | 12 | + | 
|  | 13 | +For a given unit, we need to find the minimum integer c, such that  | 
|  | 14 | + | 
|  | 15 | +h x (c x d) > H x D  | 
|  | 16 | + | 
|  | 17 | +----- | 
|  | 18 | + | 
|  | 19 | +Another condition is that c <= C/C[i]  | 
|  | 20 | + | 
|  | 21 | +----- | 
|  | 22 | + | 
|  | 23 | +Now, instead of checking the amount of damage a monster can take, let us try to calculate the maximum  | 
|  | 24 | +product we can reach with C[i] coins  | 
|  | 25 | + | 
|  | 26 | +Maximum_product[C[i]] = max(H[i] x D[i]) initially  | 
|  | 27 | + | 
|  | 28 | +The key insight to propagate this DP is that we can buy multiple sets of the same unit  | 
|  | 29 | + | 
|  | 30 | +If we buy C coin sets of the i-th unit  | 
|  | 31 | + | 
|  | 32 | +Maximum_product[C[i] x C] = max(C x H[i] X D[i])  | 
|  | 33 | + | 
|  | 34 | +----- | 
|  | 35 | + | 
|  | 36 | +We can then binary search the answer for each query  | 
|  | 37 | + | 
|  | 38 | +----- | 
|  | 39 | + | 
|  | 40 | +int main() | 
|  | 41 | +{ | 
|  | 42 | + int no_of_elements, max_cost; | 
|  | 43 | + cin >> no_of_elements >> max_cost; | 
|  | 44 | + | 
|  | 45 | + vector <long long> cost(no_of_elements + 1), damage(no_of_elements + 1), health(no_of_elements + 1); | 
|  | 46 | + vector <long long> max_product(max_cost + 1, 0); | 
|  | 47 | + for(int i = 1; i <= no_of_elements; i++) | 
|  | 48 | + { | 
|  | 49 | + cin >> cost[i] >> damage[i] >> health[i]; | 
|  | 50 | + | 
|  | 51 | + max_product[cost[i]] = max(max_product[cost[i]], damage[i]*health[i]); | 
|  | 52 | + } | 
|  | 53 | + | 
|  | 54 | + | 
|  | 55 | + for(int c = 1; c <= max_cost; c++) | 
|  | 56 | + { | 
|  | 57 | + for(int coin_sets = 1; c*1LL*coin_sets <= max_cost; coin_sets++) | 
|  | 58 | + { | 
|  | 59 | + max_product[c*coin_sets] = max(max_product[c*coin_sets], max_product[c]*coin_sets); | 
|  | 60 | + } | 
|  | 61 | + } | 
|  | 62 | + | 
|  | 63 | + vector <long long> max_product_till(max_cost + 1); | 
|  | 64 | + for(int i = 1; i <= max_cost; i++) | 
|  | 65 | + { | 
|  | 66 | + max_product_till[i] = max(max_product[i], max_product_till[i - 1]); | 
|  | 67 | + } | 
|  | 68 | + | 
|  | 69 | + int no_of_monsters; | 
|  | 70 | + cin >> no_of_monsters; | 
|  | 71 | + | 
|  | 72 | + for(int i = 1; i <= no_of_monsters; i++) | 
|  | 73 | + { | 
|  | 74 | + long long damage_here, health_here; | 
|  | 75 | + cin >> damage_here >> health_here; | 
|  | 76 | + | 
|  | 77 | + long long product = damage_here*health_here; | 
|  | 78 | + | 
|  | 79 | + int minimum_coins = upper_bound(all(max_product_till), product) - max_product_till.begin(); | 
|  | 80 | + | 
|  | 81 | + cout << (minimum_coins <= max_cost ? minimum_coins : -1) << "\n"; | 
|  | 82 | + } | 
|  | 83 | + | 
|  | 84 | + return 0; | 
|  | 85 | +} | 
0 commit comments