Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit fee054d

Browse files
math
1 parent 31aeac2 commit fee054d

File tree

1 file changed

+235
-0
lines changed

1 file changed

+235
-0
lines changed

‎math/求导法则.ipynb‎

Lines changed: 235 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,235 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"# 行向量对元素求导\n",
8+
"\n",
9+
"设$y^T=[y_1 ... y_n]$是n维行向量,$x$是元素\n",
10+
"\n",
11+
"$\\frac{\\partial y^T}{\\partial x}=[ \\frac{\\partial y_1}{\\partial x} ... \\frac{\\partial y_n}{\\partial x} ] $\n",
12+
"\n"
13+
]
14+
},
15+
{
16+
"cell_type": "markdown",
17+
"metadata": {},
18+
"source": [
19+
"# 列向量对元素求导\n",
20+
"\n",
21+
"设$y=\\begin{bmatrix}y_1\\\\ ...\\\\ y_n\\end{bmatrix}$是m维列向量,$x$是元素\n",
22+
"\n",
23+
"则$\\frac{\\partial y}{\\partial x}=\\begin{bmatrix} \\frac{\\partial y_1}{\\partial x}\\\\ ... \\\\\n",
24+
"\\frac{\\partial y_m}{\\partial x} \\end{bmatrix} $"
25+
]
26+
},
27+
{
28+
"cell_type": "markdown",
29+
"metadata": {},
30+
"source": [
31+
"# 矩阵对元素求导\n",
32+
"\n",
33+
"设$Y=\\begin{bmatrix}y_1 & ... & y_{1n}\\\\...&...& ...\\\\ y_{m1} & ... & y_{mn}\\end{bmatrix}$是$m*n$维矩阵,$x$是元素\n",
34+
"\n",
35+
"则$\\frac{\\partial Y}{\\partial x}=\\begin{bmatrix} \\frac{\\partial y_{11}}{\\partial x} & ... &\\frac{\\partial y_{1n}}{\\partial x}\\\\...&...& ... \\\\\n",
36+
"\\frac{\\partial y_{m1}}{\\partial x}& ... & \\frac{\\partial y_{mn}}{\\partial x} \\end{bmatrix} $"
37+
]
38+
},
39+
{
40+
"cell_type": "markdown",
41+
"metadata": {},
42+
"source": [
43+
"# 元素对行向量求导\n",
44+
"\n",
45+
"设$y$是元素,$x^T=[x_1 ... x_q]$是q维行向量\n",
46+
"\n",
47+
"则$\\frac{\\partial y}{\\partial x^T}=[ \\frac{\\partial y}{\\partial x_1} ... \\frac{\\partial y}{\\partial x_q} ] $"
48+
]
49+
},
50+
{
51+
"cell_type": "markdown",
52+
"metadata": {},
53+
"source": [
54+
"# 元素对列向量求导\n",
55+
"\n",
56+
"设$y$是元素,$x=\\begin{bmatrix}x_1\\\\ ...\\\\ x_n\\end{bmatrix}$是p维列向量\n",
57+
"\n",
58+
"则$\\frac{\\partial y}{\\partial x}=\\begin{bmatrix} \\frac{\\partial y}{\\partial x_1}\\\\ ... \\\\\n",
59+
"\\frac{\\partial y}{\\partial x_p} \\end{bmatrix} $"
60+
]
61+
},
62+
{
63+
"cell_type": "markdown",
64+
"metadata": {},
65+
"source": [
66+
"# 元素对矩阵求导\n",
67+
"\n",
68+
"设$y$是元素,$X=\\begin{bmatrix}x_1 & ... & x_{1q}\\\\...&...& ...\\\\ x_{p1} & ... & x_{pq}\\end{bmatrix}$是$p*q$维矩阵\n",
69+
"\n",
70+
"则$\\frac{\\partial y}{\\partial X}=\\begin{bmatrix} \\frac{\\partial y}{\\partial x_{11}} & ... &\\frac{\\partial y}{\\partial x_{1q}}\\\\...&...& ... \\\\\n",
71+
"\\frac{\\partial y}{\\partial x_{p1}}& ... & \\frac{\\partial y}{\\partial x_{pq}} \\end{bmatrix} $"
72+
]
73+
},
74+
{
75+
"cell_type": "markdown",
76+
"metadata": {},
77+
"source": [
78+
"# 行向量对列向量求导\n",
79+
"\n",
80+
"设$y^T=[y_1 ... y_n]$是n维行向量,$x=\\begin{bmatrix}x_1\\\\ ...\\\\ x_p\\end{bmatrix}$是p维列向量\n",
81+
"\n",
82+
"则$\\frac{\\partial y^T}{\\partial x}=\\begin{bmatrix} \\frac{\\partial y_{1}}{\\partial x_{1}} & ... &\\frac{\\partial y_{n}}{\\partial x_{1}}\\\\...&...& ... \\\\\n",
83+
"\\frac{\\partial y_1}{\\partial x_{p}}& ... & \\frac{\\partial y_n}{\\partial x_{p}} \\end{bmatrix} $"
84+
]
85+
},
86+
{
87+
"cell_type": "markdown",
88+
"metadata": {},
89+
"source": [
90+
"# 列向量对行向量求导\n",
91+
"\n",
92+
"设$y=\\begin{bmatrix}y_1\\\\ ...\\\\ y_m\\end{bmatrix}$是m维列向量,$x^T=[x_1 ... x_q]$是q维行向量\n",
93+
"\n",
94+
"则$\\frac{\\partial y}{\\partial x^T}=\\begin{bmatrix} \\frac{\\partial y_{1}}{\\partial x_{1}} & ... &\\frac{\\partial y_{1}}{\\partial x_{q}}\\\\...&...& ... \\\\\n",
95+
"\\frac{\\partial y_m}{\\partial x_{1}}& ... & \\frac{\\partial y_m}{\\partial x_{q}} \\end{bmatrix} $"
96+
]
97+
},
98+
{
99+
"cell_type": "markdown",
100+
"metadata": {},
101+
"source": [
102+
"# 行向量对行向量求导\n",
103+
"\n",
104+
"设$y^T=[y_1 ... y_n]$是n维行向量,$x^T=[x_1 ... x_q]$是q维行向量\n",
105+
"\n",
106+
"则$\\frac{\\partial y^T}{\\partial x^T}=[ \\frac{\\partial y^T}{\\partial x_1} ... \\frac{\\partial y^T}{\\partial x_q} ] $"
107+
]
108+
},
109+
{
110+
"cell_type": "markdown",
111+
"metadata": {},
112+
"source": [
113+
"# 列向量对列向量求导\n",
114+
"\n",
115+
"设$y=\\begin{bmatrix}y_1\\\\ ...\\\\ y_m\\end{bmatrix}$是m维列向量,$x=\\begin{bmatrix}x_1\\\\ ...\\\\ x_p\\end{bmatrix}$是p维列向量\n",
116+
"\n",
117+
"则$\\frac{\\partial y}{\\partial x}=\\begin{bmatrix} \\frac{\\partial y_1}{\\partial x} \\\\...\\\\\n",
118+
"\\frac{\\partial y_m}{\\partial x} \\end{bmatrix} $"
119+
]
120+
},
121+
{
122+
"cell_type": "markdown",
123+
"metadata": {},
124+
"source": [
125+
"# 矩阵对行向量求导\n",
126+
"\n",
127+
"设$Y=\\begin{bmatrix}y_1 & ... & y_{1n}\\\\...&...& ...\\\\ y_{m1} & ... & y_{mn}\\end{bmatrix}$是$m*n$维矩阵,$x^T=[x_1 ... x_q]$是q维行向量\n",
128+
"\n",
129+
"则$\\frac{\\partial Y}{\\partial x^T}=[ \\frac{\\partial Y}{\\partial x_1} ... \\frac{\\partial Y}{\\partial x_q} ] $"
130+
]
131+
},
132+
{
133+
"cell_type": "markdown",
134+
"metadata": {},
135+
"source": [
136+
"# 矩阵对列向量求导\n",
137+
"\n",
138+
"设$Y=\\begin{bmatrix}y_1 & ... & y_{1n}\\\\...&...& ...\\\\ y_{m1} & ... & y_{mn}\\end{bmatrix}$是$m*n$维矩阵,$x=\\begin{bmatrix}x_1\\\\ ...\\\\ x_n\\end{bmatrix}$是p维列向量\n",
139+
"\n",
140+
"则$\\frac{\\partial Y}{\\partial x}=\\begin{bmatrix} \\frac{\\partial y_{11}}{\\partial x} & ... &\\frac{\\partial y_{1n}}{\\partial x}\\\\...&...& ... \\\\\n",
141+
"\\frac{\\partial y_{m1}}{\\partial x}& ... & \\frac{\\partial y_{mn}}{\\partial x} \\end{bmatrix} $"
142+
]
143+
},
144+
{
145+
"cell_type": "markdown",
146+
"metadata": {},
147+
"source": [
148+
"# 行向量对矩阵求导\n",
149+
"\n",
150+
"设$y^T=[y_1 ... y_n]$是n维行向量,$X=\\begin{bmatrix}x_1 & ... & x_{1q}\\\\...&...& ...\\\\ x_{p1} & ... & x_{pq}\\end{bmatrix}$是$p*q$维矩阵\n",
151+
"\n",
152+
"则$\\frac{\\partial y^T}{\\partial X}=\\begin{bmatrix} \\frac{\\partial y^T}{\\partial x_{11}} & ... &\\frac{\\partial y^T}{\\partial x_{1q}}\\\\...&...& ... \\\\\n",
153+
"\\frac{\\partial y^T}{\\partial x_{p1}}& ... & \\frac{\\partial y^T}{\\partial x_{pq}} \\end{bmatrix} $"
154+
]
155+
},
156+
{
157+
"cell_type": "markdown",
158+
"metadata": {},
159+
"source": [
160+
"# 列向量对矩阵求导\n",
161+
"\n",
162+
"设$y=\\begin{bmatrix}y_1\\\\ ...\\\\ y_m\\end{bmatrix}$是m维列向量,$X=\\begin{bmatrix}x_1 & ... & x_{1q}\\\\...&...& ...\\\\ x_{p1} & ... & x_{pq}\\end{bmatrix}$是$p*q$维矩阵\n",
163+
"\n",
164+
"则$\\frac{\\partial y}{\\partial X}=\\begin{bmatrix} \\frac{\\partial y_1}{\\partial X}\\\\ ... \\\\\n",
165+
"\\frac{\\partial y_m}{\\partial X} \\end{bmatrix} $"
166+
]
167+
},
168+
{
169+
"cell_type": "markdown",
170+
"metadata": {},
171+
"source": [
172+
"# 矩阵对矩阵求导\n",
173+
"\n",
174+
"设$Y=\\begin{bmatrix}y_1 & ... & y_{1n}\\\\...&...& ...\\\\ y_{m1} & ... & y_{mn}\\end{bmatrix}=\\begin{bmatrix}y_1^T\\\\ ...\\\\ y_m^T\\end{bmatrix}$是$m*n$维矩阵,$X=\\begin{bmatrix}x_1 & ... & x_{1q}\\\\...&...& ...\\\\ x_{p1} & ... & x_{pq}\\end{bmatrix}=[x_1 ... x_q]$是$p*q$维矩阵\n",
175+
"\n",
176+
"则$\\frac{\\partial Y}{\\partial X}\n",
177+
"=[ \\frac{\\partial Y}{\\partial x_1} ... \\frac{\\partial Y}{\\partial x_q} ]\n",
178+
"=\\begin{bmatrix}\n",
179+
"\\frac{\\partial y_1^T}{\\partial X}\\\\\n",
180+
"... \\\\\n",
181+
"\\frac{\\partial y_m^T}{\\partial X} \n",
182+
"\\end{bmatrix} \n",
183+
"=\\begin{bmatrix}\n",
184+
"\\frac{\\partial y_{1}^T}{\\partial x_{1}} & ... &\\frac{\\partial y_{1}^T}{\\partial x_{q}}\\\\\n",
185+
"...&...& ... \\\\\n",
186+
"\\frac{\\partial y_m^T}{\\partial x_{1}}& ... & \\frac{\\partial y_m^T}{\\partial x_{q}} \\end{bmatrix} $"
187+
]
188+
}
189+
],
190+
"metadata": {
191+
"kernelspec": {
192+
"display_name": "Python 3",
193+
"language": "python",
194+
"name": "python3"
195+
},
196+
"language_info": {
197+
"codemirror_mode": {
198+
"name": "ipython",
199+
"version": 3
200+
},
201+
"file_extension": ".py",
202+
"mimetype": "text/x-python",
203+
"name": "python",
204+
"nbconvert_exporter": "python",
205+
"pygments_lexer": "ipython3",
206+
"version": "3.5.2"
207+
},
208+
"toc": {
209+
"colors": {
210+
"hover_highlight": "#DAA520",
211+
"navigate_num": "#000000",
212+
"navigate_text": "#333333",
213+
"running_highlight": "#FF0000",
214+
"selected_highlight": "#FFD700",
215+
"sidebar_border": "#EEEEEE",
216+
"wrapper_background": "#FFFFFF"
217+
},
218+
"moveMenuLeft": true,
219+
"nav_menu": {
220+
"height": "282px",
221+
"width": "252px"
222+
},
223+
"navigate_menu": true,
224+
"number_sections": true,
225+
"sideBar": true,
226+
"threshold": 4,
227+
"toc_cell": false,
228+
"toc_section_display": "block",
229+
"toc_window_display": false,
230+
"widenNotebook": false
231+
}
232+
},
233+
"nbformat": 4,
234+
"nbformat_minor": 2
235+
}

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /