|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# 行向量对元素求导\n", |
| 8 | + "\n", |
| 9 | + "设$y^T=[y_1 ... y_n]$是n维行向量,$x$是元素\n", |
| 10 | + "\n", |
| 11 | + "$\\frac{\\partial y^T}{\\partial x}=[ \\frac{\\partial y_1}{\\partial x} ... \\frac{\\partial y_n}{\\partial x} ] $\n", |
| 12 | + "\n" |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "markdown", |
| 17 | + "metadata": {}, |
| 18 | + "source": [ |
| 19 | + "# 列向量对元素求导\n", |
| 20 | + "\n", |
| 21 | + "设$y=\\begin{bmatrix}y_1\\\\ ...\\\\ y_n\\end{bmatrix}$是m维列向量,$x$是元素\n", |
| 22 | + "\n", |
| 23 | + "则$\\frac{\\partial y}{\\partial x}=\\begin{bmatrix} \\frac{\\partial y_1}{\\partial x}\\\\ ... \\\\\n", |
| 24 | + "\\frac{\\partial y_m}{\\partial x} \\end{bmatrix} $" |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "markdown", |
| 29 | + "metadata": {}, |
| 30 | + "source": [ |
| 31 | + "# 矩阵对元素求导\n", |
| 32 | + "\n", |
| 33 | + "设$Y=\\begin{bmatrix}y_1 & ... & y_{1n}\\\\...&...& ...\\\\ y_{m1} & ... & y_{mn}\\end{bmatrix}$是$m*n$维矩阵,$x$是元素\n", |
| 34 | + "\n", |
| 35 | + "则$\\frac{\\partial Y}{\\partial x}=\\begin{bmatrix} \\frac{\\partial y_{11}}{\\partial x} & ... &\\frac{\\partial y_{1n}}{\\partial x}\\\\...&...& ... \\\\\n", |
| 36 | + "\\frac{\\partial y_{m1}}{\\partial x}& ... & \\frac{\\partial y_{mn}}{\\partial x} \\end{bmatrix} $" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "markdown", |
| 41 | + "metadata": {}, |
| 42 | + "source": [ |
| 43 | + "# 元素对行向量求导\n", |
| 44 | + "\n", |
| 45 | + "设$y$是元素,$x^T=[x_1 ... x_q]$是q维行向量\n", |
| 46 | + "\n", |
| 47 | + "则$\\frac{\\partial y}{\\partial x^T}=[ \\frac{\\partial y}{\\partial x_1} ... \\frac{\\partial y}{\\partial x_q} ] $" |
| 48 | + ] |
| 49 | + }, |
| 50 | + { |
| 51 | + "cell_type": "markdown", |
| 52 | + "metadata": {}, |
| 53 | + "source": [ |
| 54 | + "# 元素对列向量求导\n", |
| 55 | + "\n", |
| 56 | + "设$y$是元素,$x=\\begin{bmatrix}x_1\\\\ ...\\\\ x_n\\end{bmatrix}$是p维列向量\n", |
| 57 | + "\n", |
| 58 | + "则$\\frac{\\partial y}{\\partial x}=\\begin{bmatrix} \\frac{\\partial y}{\\partial x_1}\\\\ ... \\\\\n", |
| 59 | + "\\frac{\\partial y}{\\partial x_p} \\end{bmatrix} $" |
| 60 | + ] |
| 61 | + }, |
| 62 | + { |
| 63 | + "cell_type": "markdown", |
| 64 | + "metadata": {}, |
| 65 | + "source": [ |
| 66 | + "# 元素对矩阵求导\n", |
| 67 | + "\n", |
| 68 | + "设$y$是元素,$X=\\begin{bmatrix}x_1 & ... & x_{1q}\\\\...&...& ...\\\\ x_{p1} & ... & x_{pq}\\end{bmatrix}$是$p*q$维矩阵\n", |
| 69 | + "\n", |
| 70 | + "则$\\frac{\\partial y}{\\partial X}=\\begin{bmatrix} \\frac{\\partial y}{\\partial x_{11}} & ... &\\frac{\\partial y}{\\partial x_{1q}}\\\\...&...& ... \\\\\n", |
| 71 | + "\\frac{\\partial y}{\\partial x_{p1}}& ... & \\frac{\\partial y}{\\partial x_{pq}} \\end{bmatrix} $" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | + "cell_type": "markdown", |
| 76 | + "metadata": {}, |
| 77 | + "source": [ |
| 78 | + "# 行向量对列向量求导\n", |
| 79 | + "\n", |
| 80 | + "设$y^T=[y_1 ... y_n]$是n维行向量,$x=\\begin{bmatrix}x_1\\\\ ...\\\\ x_p\\end{bmatrix}$是p维列向量\n", |
| 81 | + "\n", |
| 82 | + "则$\\frac{\\partial y^T}{\\partial x}=\\begin{bmatrix} \\frac{\\partial y_{1}}{\\partial x_{1}} & ... &\\frac{\\partial y_{n}}{\\partial x_{1}}\\\\...&...& ... \\\\\n", |
| 83 | + "\\frac{\\partial y_1}{\\partial x_{p}}& ... & \\frac{\\partial y_n}{\\partial x_{p}} \\end{bmatrix} $" |
| 84 | + ] |
| 85 | + }, |
| 86 | + { |
| 87 | + "cell_type": "markdown", |
| 88 | + "metadata": {}, |
| 89 | + "source": [ |
| 90 | + "# 列向量对行向量求导\n", |
| 91 | + "\n", |
| 92 | + "设$y=\\begin{bmatrix}y_1\\\\ ...\\\\ y_m\\end{bmatrix}$是m维列向量,$x^T=[x_1 ... x_q]$是q维行向量\n", |
| 93 | + "\n", |
| 94 | + "则$\\frac{\\partial y}{\\partial x^T}=\\begin{bmatrix} \\frac{\\partial y_{1}}{\\partial x_{1}} & ... &\\frac{\\partial y_{1}}{\\partial x_{q}}\\\\...&...& ... \\\\\n", |
| 95 | + "\\frac{\\partial y_m}{\\partial x_{1}}& ... & \\frac{\\partial y_m}{\\partial x_{q}} \\end{bmatrix} $" |
| 96 | + ] |
| 97 | + }, |
| 98 | + { |
| 99 | + "cell_type": "markdown", |
| 100 | + "metadata": {}, |
| 101 | + "source": [ |
| 102 | + "# 行向量对行向量求导\n", |
| 103 | + "\n", |
| 104 | + "设$y^T=[y_1 ... y_n]$是n维行向量,$x^T=[x_1 ... x_q]$是q维行向量\n", |
| 105 | + "\n", |
| 106 | + "则$\\frac{\\partial y^T}{\\partial x^T}=[ \\frac{\\partial y^T}{\\partial x_1} ... \\frac{\\partial y^T}{\\partial x_q} ] $" |
| 107 | + ] |
| 108 | + }, |
| 109 | + { |
| 110 | + "cell_type": "markdown", |
| 111 | + "metadata": {}, |
| 112 | + "source": [ |
| 113 | + "# 列向量对列向量求导\n", |
| 114 | + "\n", |
| 115 | + "设$y=\\begin{bmatrix}y_1\\\\ ...\\\\ y_m\\end{bmatrix}$是m维列向量,$x=\\begin{bmatrix}x_1\\\\ ...\\\\ x_p\\end{bmatrix}$是p维列向量\n", |
| 116 | + "\n", |
| 117 | + "则$\\frac{\\partial y}{\\partial x}=\\begin{bmatrix} \\frac{\\partial y_1}{\\partial x} \\\\...\\\\\n", |
| 118 | + "\\frac{\\partial y_m}{\\partial x} \\end{bmatrix} $" |
| 119 | + ] |
| 120 | + }, |
| 121 | + { |
| 122 | + "cell_type": "markdown", |
| 123 | + "metadata": {}, |
| 124 | + "source": [ |
| 125 | + "# 矩阵对行向量求导\n", |
| 126 | + "\n", |
| 127 | + "设$Y=\\begin{bmatrix}y_1 & ... & y_{1n}\\\\...&...& ...\\\\ y_{m1} & ... & y_{mn}\\end{bmatrix}$是$m*n$维矩阵,$x^T=[x_1 ... x_q]$是q维行向量\n", |
| 128 | + "\n", |
| 129 | + "则$\\frac{\\partial Y}{\\partial x^T}=[ \\frac{\\partial Y}{\\partial x_1} ... \\frac{\\partial Y}{\\partial x_q} ] $" |
| 130 | + ] |
| 131 | + }, |
| 132 | + { |
| 133 | + "cell_type": "markdown", |
| 134 | + "metadata": {}, |
| 135 | + "source": [ |
| 136 | + "# 矩阵对列向量求导\n", |
| 137 | + "\n", |
| 138 | + "设$Y=\\begin{bmatrix}y_1 & ... & y_{1n}\\\\...&...& ...\\\\ y_{m1} & ... & y_{mn}\\end{bmatrix}$是$m*n$维矩阵,$x=\\begin{bmatrix}x_1\\\\ ...\\\\ x_n\\end{bmatrix}$是p维列向量\n", |
| 139 | + "\n", |
| 140 | + "则$\\frac{\\partial Y}{\\partial x}=\\begin{bmatrix} \\frac{\\partial y_{11}}{\\partial x} & ... &\\frac{\\partial y_{1n}}{\\partial x}\\\\...&...& ... \\\\\n", |
| 141 | + "\\frac{\\partial y_{m1}}{\\partial x}& ... & \\frac{\\partial y_{mn}}{\\partial x} \\end{bmatrix} $" |
| 142 | + ] |
| 143 | + }, |
| 144 | + { |
| 145 | + "cell_type": "markdown", |
| 146 | + "metadata": {}, |
| 147 | + "source": [ |
| 148 | + "# 行向量对矩阵求导\n", |
| 149 | + "\n", |
| 150 | + "设$y^T=[y_1 ... y_n]$是n维行向量,$X=\\begin{bmatrix}x_1 & ... & x_{1q}\\\\...&...& ...\\\\ x_{p1} & ... & x_{pq}\\end{bmatrix}$是$p*q$维矩阵\n", |
| 151 | + "\n", |
| 152 | + "则$\\frac{\\partial y^T}{\\partial X}=\\begin{bmatrix} \\frac{\\partial y^T}{\\partial x_{11}} & ... &\\frac{\\partial y^T}{\\partial x_{1q}}\\\\...&...& ... \\\\\n", |
| 153 | + "\\frac{\\partial y^T}{\\partial x_{p1}}& ... & \\frac{\\partial y^T}{\\partial x_{pq}} \\end{bmatrix} $" |
| 154 | + ] |
| 155 | + }, |
| 156 | + { |
| 157 | + "cell_type": "markdown", |
| 158 | + "metadata": {}, |
| 159 | + "source": [ |
| 160 | + "# 列向量对矩阵求导\n", |
| 161 | + "\n", |
| 162 | + "设$y=\\begin{bmatrix}y_1\\\\ ...\\\\ y_m\\end{bmatrix}$是m维列向量,$X=\\begin{bmatrix}x_1 & ... & x_{1q}\\\\...&...& ...\\\\ x_{p1} & ... & x_{pq}\\end{bmatrix}$是$p*q$维矩阵\n", |
| 163 | + "\n", |
| 164 | + "则$\\frac{\\partial y}{\\partial X}=\\begin{bmatrix} \\frac{\\partial y_1}{\\partial X}\\\\ ... \\\\\n", |
| 165 | + "\\frac{\\partial y_m}{\\partial X} \\end{bmatrix} $" |
| 166 | + ] |
| 167 | + }, |
| 168 | + { |
| 169 | + "cell_type": "markdown", |
| 170 | + "metadata": {}, |
| 171 | + "source": [ |
| 172 | + "# 矩阵对矩阵求导\n", |
| 173 | + "\n", |
| 174 | + "设$Y=\\begin{bmatrix}y_1 & ... & y_{1n}\\\\...&...& ...\\\\ y_{m1} & ... & y_{mn}\\end{bmatrix}=\\begin{bmatrix}y_1^T\\\\ ...\\\\ y_m^T\\end{bmatrix}$是$m*n$维矩阵,$X=\\begin{bmatrix}x_1 & ... & x_{1q}\\\\...&...& ...\\\\ x_{p1} & ... & x_{pq}\\end{bmatrix}=[x_1 ... x_q]$是$p*q$维矩阵\n", |
| 175 | + "\n", |
| 176 | + "则$\\frac{\\partial Y}{\\partial X}\n", |
| 177 | + "=[ \\frac{\\partial Y}{\\partial x_1} ... \\frac{\\partial Y}{\\partial x_q} ]\n", |
| 178 | + "=\\begin{bmatrix}\n", |
| 179 | + "\\frac{\\partial y_1^T}{\\partial X}\\\\\n", |
| 180 | + "... \\\\\n", |
| 181 | + "\\frac{\\partial y_m^T}{\\partial X} \n", |
| 182 | + "\\end{bmatrix} \n", |
| 183 | + "=\\begin{bmatrix}\n", |
| 184 | + "\\frac{\\partial y_{1}^T}{\\partial x_{1}} & ... &\\frac{\\partial y_{1}^T}{\\partial x_{q}}\\\\\n", |
| 185 | + "...&...& ... \\\\\n", |
| 186 | + "\\frac{\\partial y_m^T}{\\partial x_{1}}& ... & \\frac{\\partial y_m^T}{\\partial x_{q}} \\end{bmatrix} $" |
| 187 | + ] |
| 188 | + } |
| 189 | + ], |
| 190 | + "metadata": { |
| 191 | + "kernelspec": { |
| 192 | + "display_name": "Python 3", |
| 193 | + "language": "python", |
| 194 | + "name": "python3" |
| 195 | + }, |
| 196 | + "language_info": { |
| 197 | + "codemirror_mode": { |
| 198 | + "name": "ipython", |
| 199 | + "version": 3 |
| 200 | + }, |
| 201 | + "file_extension": ".py", |
| 202 | + "mimetype": "text/x-python", |
| 203 | + "name": "python", |
| 204 | + "nbconvert_exporter": "python", |
| 205 | + "pygments_lexer": "ipython3", |
| 206 | + "version": "3.5.2" |
| 207 | + }, |
| 208 | + "toc": { |
| 209 | + "colors": { |
| 210 | + "hover_highlight": "#DAA520", |
| 211 | + "navigate_num": "#000000", |
| 212 | + "navigate_text": "#333333", |
| 213 | + "running_highlight": "#FF0000", |
| 214 | + "selected_highlight": "#FFD700", |
| 215 | + "sidebar_border": "#EEEEEE", |
| 216 | + "wrapper_background": "#FFFFFF" |
| 217 | + }, |
| 218 | + "moveMenuLeft": true, |
| 219 | + "nav_menu": { |
| 220 | + "height": "282px", |
| 221 | + "width": "252px" |
| 222 | + }, |
| 223 | + "navigate_menu": true, |
| 224 | + "number_sections": true, |
| 225 | + "sideBar": true, |
| 226 | + "threshold": 4, |
| 227 | + "toc_cell": false, |
| 228 | + "toc_section_display": "block", |
| 229 | + "toc_window_display": false, |
| 230 | + "widenNotebook": false |
| 231 | + } |
| 232 | + }, |
| 233 | + "nbformat": 4, |
| 234 | + "nbformat_minor": 2 |
| 235 | +} |
0 commit comments