Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 9c0a1d1

Browse files
Update README.md
1 parent 907d109 commit 9c0a1d1

File tree

1 file changed

+20
-5
lines changed

1 file changed

+20
-5
lines changed

‎README.md‎

Lines changed: 20 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -30,10 +30,11 @@ Sample code for hyper-parameter optimization implementation for machine learning
3030
[HPO_Classification.ipynb](https://github.com/LiYangHart/Hyperparameter-Optimization-of-Machine-Learning-Algorithms/blob/master/HPO_Classification.ipynb)
3131
**Dataset used:** [MNIST](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
3232

33-
### Machine Learning Algorithms
33+
### Machine Learning & Deep Learning Algorithms
3434
* Random forest (RF)
3535
* Support vector machine (SVM)
3636
* K-nearest neighbor (KNN)
37+
* Artificial Neural Networks (ANN)
3738

3839
### Hyperparameter Configuration Space
3940
| ML Model | Hyper-parameter | Type | Search Space |
@@ -42,21 +43,34 @@ Sample code for hyper-parameter optimization implementation for machine learning
4243
| | max_depth | Discrete | [5,50] |
4344
| | min_samples_split | Discrete | [2,11] |
4445
| | min_samples_leaf | Discrete | [1,11] |
45-
| | criterion | Categorical | ['gini', 'entropy'] |
46+
| | criterion | Categorical | 'gini', 'entropy' |
4647
| | max_features | Discrete | [1,64] |
4748
| SVM Classifier | C | Continuous | [0.1,50] |
48-
| | kernel | Categorical | ['linear', 'poly', 'rbf', 'sigmoid'] |
49+
| | kernel | Categorical | 'linear', 'poly', 'rbf', 'sigmoid' |
4950
| KNN Classifier | n_neighbors | Discrete | [1,20] |
51+
| ANN Classifier | optimizer | Categorical | 'adam', 'rmsprop', 'sgd' |
52+
| | activation | Categorical | 'relu', 'tanh' |
53+
| | batch_size | Discrete | [16,64] |
54+
| | neurons | Discrete | [10,100] |
55+
| | epochs | Discrete | [20,50] |
56+
| | patience | Discrete | [3,20] |
5057
| RF Regressor | n_estimators | Discrete | [10,100] |
5158
| | max_depth | Discrete | [5,50] |
5259
| | min_samples_split | Discrete | [2,11] |
5360
| | min_samples_leaf | Discrete | [1,11] |
54-
| | criterion | Categorical | ['mse', 'mae'] |
61+
| | criterion | Categorical | 'mse', 'mae' |
5562
| | max_features | Discrete | [1,13] |
5663
| SVM Regressor | C | Continuous | [0.1,50] |
57-
| | kernel | Categorical | ['linear', 'poly', 'rbf', 'sigmoid'] |
64+
| | kernel | Categorical | 'linear', 'poly', 'rbf', 'sigmoid' |
5865
| | epsilon | Continuous | [0.001,1] |
5966
| KNN Regressor | n_neighbors | Discrete | [1,20] |
67+
| ANN Regressor | optimizer | Categorical | 'adam', 'rmsprop' |
68+
| | activation | Categorical | 'relu', 'tanh' |
69+
| | loss | Categorical | 'mse', 'mae' |
70+
| | batch_size | Discrete | [16,64] |
71+
| | neurons | Discrete | [10,100] |
72+
| | epochs | Discrete | [20,50] |
73+
| | patience | Discrete | [3,20] |
6074

6175
### HPO Algorithms
6276
* Grid search
@@ -69,6 +83,7 @@ Sample code for hyper-parameter optimization implementation for machine learning
6983

7084
### Requirements
7185
* Python 3.5
86+
* [Keras](https://keras.io/)
7287
* [scikit-learn](https://scikit-learn.org/stable/)
7388
* [hyperband](https://github.com/thuijskens/scikit-hyperband)
7489
* [scikit-optimize](https://github.com/scikit-optimize/scikit-optimize)

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /