@@ -30,10 +30,11 @@ Sample code for hyper-parameter optimization implementation for machine learning
3030[ HPO_Classification.ipynb] ( https://github.com/LiYangHart/Hyperparameter-Optimization-of-Machine-Learning-Algorithms/blob/master/HPO_Classification.ipynb )  
3131** Dataset used:**  [ MNIST] ( https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits )  
3232
33- ### Machine Learning Algorithms   
33+ ### Machine Learning & Deep Learning  Algorithms   
3434*  Random forest (RF)
3535*  Support vector machine (SVM)
3636*  K-nearest neighbor (KNN) 
37+ *  Artificial Neural Networks (ANN)
3738
3839### Hyperparameter Configuration Space   
3940|  ML Model |  Hyper-parameter |  Type |  Search Space | 
@@ -42,21 +43,34 @@ Sample code for hyper-parameter optimization implementation for machine learning
4243|  |  max_depth |  Discrete |  [ 5,50]  | 
4344|  |  min_samples_split |  Discrete |  [ 2,11]  | 
4445|  |  min_samples_leaf |  Discrete |  [ 1,11]  | 
45- |  |  criterion |  Categorical |  [ 'gini', 'entropy']  | 
46+ |  |  criterion |  Categorical |  'gini', 'entropy' | 
4647|  |  max_features |  Discrete |  [ 1,64]  | 
4748|  SVM Classifier |  C |  Continuous |  [ 0.1,50]  | 
48- |  |  kernel |  Categorical |  [ 'linear', 'poly', 'rbf', 'sigmoid']  | 
49+ |  |  kernel |  Categorical |  'linear', 'poly', 'rbf', 'sigmoid' | 
4950|  KNN Classifier |  n_neighbors |  Discrete |  [ 1,20]  | 
51+ |  ANN Classifier |  optimizer |  Categorical |  'adam', 'rmsprop', 'sgd' | 
52+ |  |  activation |  Categorical |  'relu', 'tanh' | 
53+ |  |  batch_size |  Discrete |  [ 16,64]  | 
54+ |  |  neurons |  Discrete |  [ 10,100]  | 
55+ |  |  epochs |  Discrete |  [ 20,50]  | 
56+ |  |  patience |  Discrete |  [ 3,20]  | 
5057|  RF Regressor |  n_estimators |  Discrete |  [ 10,100]  | 
5158|  |  max_depth |  Discrete |  [ 5,50]  | 
5259|  |  min_samples_split |  Discrete |  [ 2,11]  | 
5360|  |  min_samples_leaf |  Discrete |  [ 1,11]  | 
54- |  |  criterion |  Categorical |  [ 'mse', 'mae']  | 
61+ |  |  criterion |  Categorical |  'mse', 'mae' | 
5562|  |  max_features |  Discrete |  [ 1,13]  | 
5663|  SVM Regressor |  C |  Continuous |  [ 0.1,50]  | 
57- |  |  kernel |  Categorical |  [ 'linear', 'poly', 'rbf', 'sigmoid']  | 
64+ |  |  kernel |  Categorical |  'linear', 'poly', 'rbf', 'sigmoid' | 
5865|  |  epsilon |  Continuous |  [ 0.001,1]  | 
5966|  KNN Regressor |  n_neighbors |  Discrete |  [ 1,20]  | 
67+ |  ANN Regressor |  optimizer |  Categorical |  'adam', 'rmsprop' | 
68+ |  |  activation |  Categorical |  'relu', 'tanh' | 
69+ |  |  loss |  Categorical |  'mse', 'mae' | 
70+ |  |  batch_size |  Discrete |  [ 16,64]  | 
71+ |  |  neurons |  Discrete |  [ 10,100]  | 
72+ |  |  epochs |  Discrete |  [ 20,50]  | 
73+ |  |  patience |  Discrete |  [ 3,20]  | 
6074
6175### HPO Algorithms   
6276*  Grid search
@@ -69,6 +83,7 @@ Sample code for hyper-parameter optimization implementation for machine learning
6983
7084### Requirements   
7185*  Python 3.5 
86+ *  [ Keras] ( https://keras.io/ )  
7287*  [ scikit-learn] ( https://scikit-learn.org/stable/ )  
7388*  [ hyperband] ( https://github.com/thuijskens/scikit-hyperband )  
7489*  [ scikit-optimize] ( https://github.com/scikit-optimize/scikit-optimize )  
0 commit comments