@@ -19,11 +19,11 @@ This paper and code will help industrial users, data analysts, and researchers t
1919Sample code for hyper-parameter optimization implementation for machine learning algorithms is provided in this repository. 
2020
2121** Sample code for Regression problems**  
22- [ HPO_Regression.ipynb]  
23- Dataset used: [ Boston-Housing]  
22+ [ HPO_Regression.ipynb] ( https://www.google.ca/ )  
23+ Dataset used: [ Boston-Housing] ( https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html )  
2424** Sample code for Classification problems**  
25- [ HPO_Classification.ipynb]  
26- Dataset used: [ MNIST]  
25+ [ HPO_Classification.ipynb] ( https://www.google.ca/ )  
26+ Dataset used: [ MNIST] ( https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits )  
2727
2828** Machine learning algorithms used:**  
2929*  Random forest (RF)
@@ -51,4 +51,5 @@ Dataset used: [MNIST]
5151
5252## Citation  
5353If you find this repository useful in your research, please cite: 
54+ 5455L. Yang and A. Shami, "On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice," Neurocomputing, 2020.
0 commit comments