Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 4ec69d0

Browse files
Update README.md
1 parent 8549e8f commit 4ec69d0

File tree

1 file changed

+5
-4
lines changed

1 file changed

+5
-4
lines changed

‎README.md‎

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -19,11 +19,11 @@ This paper and code will help industrial users, data analysts, and researchers t
1919
Sample code for hyper-parameter optimization implementation for machine learning algorithms is provided in this repository.
2020

2121
**Sample code for Regression problems**
22-
[HPO_Regression.ipynb]
23-
Dataset used: [Boston-Housing]
22+
[HPO_Regression.ipynb](https://www.google.ca/)
23+
Dataset used: [Boston-Housing](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html)
2424
**Sample code for Classification problems**
25-
[HPO_Classification.ipynb]
26-
Dataset used: [MNIST]
25+
[HPO_Classification.ipynb](https://www.google.ca/)
26+
Dataset used: [MNIST](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
2727

2828
**Machine learning algorithms used:**
2929
* Random forest (RF)
@@ -51,4 +51,5 @@ Dataset used: [MNIST]
5151

5252
## Citation
5353
If you find this repository useful in your research, please cite:
54+
5455
L. Yang and A. Shami, "On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice," Neurocomputing, 2020.

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /