1+ {
2+  "nbformat" : 4 ,
3+  "nbformat_minor" : 0 ,
4+  "metadata" : {
5+  "colab" : {
6+  "name" : " Multiple Linear Regression" 
7+  "provenance" : []
8+  },
9+  "kernelspec" : {
10+  "name" : " python3" 
11+  "display_name" : " Python 3" 
12+  }
13+  },
14+  "cells" : [
15+  {
16+  "cell_type" : " markdown" 
17+  "metadata" : {
18+  "id" : " CazISR8X_HUG" 
19+  },
20+  "source" : [
21+  " # Multiple Linear Regression" 
22+  ]
23+  },
24+  {
25+  "cell_type" : " markdown" 
26+  "metadata" : {
27+  "id" : " pOyqYHTk_Q57" 
28+  },
29+  "source" : [
30+  " ## Importing the libraries" 
31+  ]
32+  },
33+  {
34+  "cell_type" : " code" 
35+  "metadata" : {
36+  "id" : " T_YHJjnD_Tja" 
37+  },
38+  "source" : [
39+  " import numpy as np\n " 
40+  " import matplotlib.pyplot as plt\n " 
41+  " import pandas as pd" 
42+  ],
43+  "execution_count" : 2 ,
44+  "outputs" : []
45+  },
46+  {
47+  "cell_type" : " markdown" 
48+  "metadata" : {
49+  "id" : " vgC61-ah_WIz" 
50+  },
51+  "source" : [
52+  " ## Importing the dataset" 
53+  ]
54+  },
55+  {
56+  "cell_type" : " code" 
57+  "metadata" : {
58+  "id" : " UrxyEKGn_ez7" 
59+  },
60+  "source" : [
61+  " dataset = pd.read_csv('50_Startups.csv')\n " 
62+  " X = dataset.iloc[:, :-1].values\n " 
63+  " y = dataset.iloc[:, -1].values" 
64+  ],
65+  "execution_count" : 3 ,
66+  "outputs" : []
67+  },
68+  {
69+  "cell_type" : " code" 
70+  "metadata" : {
71+  "id" : " GOB3QhV9B5kD" 
72+  "outputId" : " eecdc574-cedd-4140-985d-60b93e6a7efe" 
73+  "colab" : {
74+  "base_uri" : " https://localhost:8080/" 
75+  "height" : 857 
76+  }
77+  },
78+  "source" : [
79+  " print(X)" 
80+  ],
81+  "execution_count" : 4 ,
82+  "outputs" : [
83+  {
84+  "output_type" : " stream" 
85+  "text" : [
86+  " [[165349.2 136897.8 471784.1 'New York']\n " 
87+  "  [162597.7 151377.59 443898.53 'California']\n " 
88+  "  [153441.51 101145.55 407934.54 'Florida']\n " 
89+  "  [144372.41 118671.85 383199.62 'New York']\n " 
90+  "  [142107.34 91391.77 366168.42 'Florida']\n " 
91+  "  [131876.9 99814.71 362861.36 'New York']\n " 
92+  "  [134615.46 147198.87 127716.82 'California']\n " 
93+  "  [130298.13 145530.06 323876.68 'Florida']\n " 
94+  "  [120542.52 148718.95 311613.29 'New York']\n " 
95+  "  [123334.88 108679.17 304981.62 'California']\n " 
96+  "  [101913.08 110594.11 229160.95 'Florida']\n " 
97+  "  [100671.96 91790.61 249744.55 'California']\n " 
98+  "  [93863.75 127320.38 249839.44 'Florida']\n " 
99+  "  [91992.39 135495.07 252664.93 'California']\n " 
100+  "  [119943.24 156547.42 256512.92 'Florida']\n " 
101+  "  [114523.61 122616.84 261776.23 'New York']\n " 
102+  "  [78013.11 121597.55 264346.06 'California']\n " 
103+  "  [94657.16 145077.58 282574.31 'New York']\n " 
104+  "  [91749.16 114175.79 294919.57 'Florida']\n " 
105+  "  [86419.7 153514.11 0.0 'New York']\n " 
106+  "  [76253.86 113867.3 298664.47 'California']\n " 
107+  "  [78389.47 153773.43 299737.29 'New York']\n " 
108+  "  [73994.56 122782.75 303319.26 'Florida']\n " 
109+  "  [67532.53 105751.03 304768.73 'Florida']\n " 
110+  "  [77044.01 99281.34 140574.81 'New York']\n " 
111+  "  [64664.71 139553.16 137962.62 'California']\n " 
112+  "  [75328.87 144135.98 134050.07 'Florida']\n " 
113+  "  [72107.6 127864.55 353183.81 'New York']\n " 
114+  "  [66051.52 182645.56 118148.2 'Florida']\n " 
115+  "  [65605.48 153032.06 107138.38 'New York']\n " 
116+  "  [61994.48 115641.28 91131.24 'Florida']\n " 
117+  "  [61136.38 152701.92 88218.23 'New York']\n " 
118+  "  [63408.86 129219.61 46085.25 'California']\n " 
119+  "  [55493.95 103057.49 214634.81 'Florida']\n " 
120+  "  [46426.07 157693.92 210797.67 'California']\n " 
121+  "  [46014.02 85047.44 205517.64 'New York']\n " 
122+  "  [28663.76 127056.21 201126.82 'Florida']\n " 
123+  "  [44069.95 51283.14 197029.42 'California']\n " 
124+  "  [20229.59 65947.93 185265.1 'New York']\n " 
125+  "  [38558.51 82982.09 174999.3 'California']\n " 
126+  "  [28754.33 118546.05 172795.67 'California']\n " 
127+  "  [27892.92 84710.77 164470.71 'Florida']\n " 
128+  "  [23640.93 96189.63 148001.11 'California']\n " 
129+  "  [15505.73 127382.3 35534.17 'New York']\n " 
130+  "  [22177.74 154806.14 28334.72 'California']\n " 
131+  "  [1000.23 124153.04 1903.93 'New York']\n " 
132+  "  [1315.46 115816.21 297114.46 'Florida']\n " 
133+  "  [0.0 135426.92 0.0 'California']\n " 
134+  "  [542.05 51743.15 0.0 'New York']\n " 
135+  "  [0.0 116983.8 45173.06 'California']]\n " 
136+  ],
137+  "name" : " stdout" 
138+  }
139+  ]
140+  },
141+  {
142+  "cell_type" : " markdown" 
143+  "metadata" : {
144+  "id" : " VadrvE7s_lS9" 
145+  },
146+  "source" : [
147+  " ## Encoding categorical data" 
148+  ]
149+  },
150+  {
151+  "cell_type" : " code" 
152+  "metadata" : {
153+  "id" : " wV3fD1mbAvsh" 
154+  },
155+  "source" : [
156+  " from sklearn.compose import ColumnTransformer\n " 
157+  " from sklearn.preprocessing import OneHotEncoder\n " 
158+  " ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [3])], remainder='passthrough')\n " 
159+  " X = np.array(ct.fit_transform(X))" 
160+  ],
161+  "execution_count" : 5 ,
162+  "outputs" : []
163+  },
164+  {
165+  "cell_type" : " code" 
166+  "metadata" : {
167+  "id" : " 4ym3HdYeCGYG" 
168+  "outputId" : " 75d3a14b-9bbd-4e62-a40b-63a6eeafca2a" 
169+  "colab" : {
170+  "base_uri" : " https://localhost:8080/" 
171+  "height" : 857 
172+  }
173+  },
174+  "source" : [
175+  " print(X)" 
176+  ],
177+  "execution_count" : 7 ,
178+  "outputs" : [
179+  {
180+  "output_type" : " stream" 
181+  "text" : [
182+  " [[0.0 0.0 1.0 165349.2 136897.8 471784.1]\n " 
183+  "  [1.0 0.0 0.0 162597.7 151377.59 443898.53]\n " 
184+  "  [0.0 1.0 0.0 153441.51 101145.55 407934.54]\n " 
185+  "  [0.0 0.0 1.0 144372.41 118671.85 383199.62]\n " 
186+  "  [0.0 1.0 0.0 142107.34 91391.77 366168.42]\n " 
187+  "  [0.0 0.0 1.0 131876.9 99814.71 362861.36]\n " 
188+  "  [1.0 0.0 0.0 134615.46 147198.87 127716.82]\n " 
189+  "  [0.0 1.0 0.0 130298.13 145530.06 323876.68]\n " 
190+  "  [0.0 0.0 1.0 120542.52 148718.95 311613.29]\n " 
191+  "  [1.0 0.0 0.0 123334.88 108679.17 304981.62]\n " 
192+  "  [0.0 1.0 0.0 101913.08 110594.11 229160.95]\n " 
193+  "  [1.0 0.0 0.0 100671.96 91790.61 249744.55]\n " 
194+  "  [0.0 1.0 0.0 93863.75 127320.38 249839.44]\n " 
195+  "  [1.0 0.0 0.0 91992.39 135495.07 252664.93]\n " 
196+  "  [0.0 1.0 0.0 119943.24 156547.42 256512.92]\n " 
197+  "  [0.0 0.0 1.0 114523.61 122616.84 261776.23]\n " 
198+  "  [1.0 0.0 0.0 78013.11 121597.55 264346.06]\n " 
199+  "  [0.0 0.0 1.0 94657.16 145077.58 282574.31]\n " 
200+  "  [0.0 1.0 0.0 91749.16 114175.79 294919.57]\n " 
201+  "  [0.0 0.0 1.0 86419.7 153514.11 0.0]\n " 
202+  "  [1.0 0.0 0.0 76253.86 113867.3 298664.47]\n " 
203+  "  [0.0 0.0 1.0 78389.47 153773.43 299737.29]\n " 
204+  "  [0.0 1.0 0.0 73994.56 122782.75 303319.26]\n " 
205+  "  [0.0 1.0 0.0 67532.53 105751.03 304768.73]\n " 
206+  "  [0.0 0.0 1.0 77044.01 99281.34 140574.81]\n " 
207+  "  [1.0 0.0 0.0 64664.71 139553.16 137962.62]\n " 
208+  "  [0.0 1.0 0.0 75328.87 144135.98 134050.07]\n " 
209+  "  [0.0 0.0 1.0 72107.6 127864.55 353183.81]\n " 
210+  "  [0.0 1.0 0.0 66051.52 182645.56 118148.2]\n " 
211+  "  [0.0 0.0 1.0 65605.48 153032.06 107138.38]\n " 
212+  "  [0.0 1.0 0.0 61994.48 115641.28 91131.24]\n " 
213+  "  [0.0 0.0 1.0 61136.38 152701.92 88218.23]\n " 
214+  "  [1.0 0.0 0.0 63408.86 129219.61 46085.25]\n " 
215+  "  [0.0 1.0 0.0 55493.95 103057.49 214634.81]\n " 
216+  "  [1.0 0.0 0.0 46426.07 157693.92 210797.67]\n " 
217+  "  [0.0 0.0 1.0 46014.02 85047.44 205517.64]\n " 
218+  "  [0.0 1.0 0.0 28663.76 127056.21 201126.82]\n " 
219+  "  [1.0 0.0 0.0 44069.95 51283.14 197029.42]\n " 
220+  "  [0.0 0.0 1.0 20229.59 65947.93 185265.1]\n " 
221+  "  [1.0 0.0 0.0 38558.51 82982.09 174999.3]\n " 
222+  "  [1.0 0.0 0.0 28754.33 118546.05 172795.67]\n " 
223+  "  [0.0 1.0 0.0 27892.92 84710.77 164470.71]\n " 
224+  "  [1.0 0.0 0.0 23640.93 96189.63 148001.11]\n " 
225+  "  [0.0 0.0 1.0 15505.73 127382.3 35534.17]\n " 
226+  "  [1.0 0.0 0.0 22177.74 154806.14 28334.72]\n " 
227+  "  [0.0 0.0 1.0 1000.23 124153.04 1903.93]\n " 
228+  "  [0.0 1.0 0.0 1315.46 115816.21 297114.46]\n " 
229+  "  [1.0 0.0 0.0 0.0 135426.92 0.0]\n " 
230+  "  [0.0 0.0 1.0 542.05 51743.15 0.0]\n " 
231+  "  [1.0 0.0 0.0 0.0 116983.8 45173.06]]\n " 
232+  ],
233+  "name" : " stdout" 
234+  }
235+  ]
236+  },
237+  {
238+  "cell_type" : " markdown" 
239+  "metadata" : {
240+  "id" : " WemVnqgeA70k" 
241+  },
242+  "source" : [
243+  " ## Splitting the dataset into the Training set and Test set" 
244+  ]
245+  },
246+  {
247+  "cell_type" : " code" 
248+  "metadata" : {
249+  "id" : " Kb_v_ae-A-20" 
250+  },
251+  "source" : [
252+  " from sklearn.model_selection import train_test_split\n " 
253+  " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)" 
254+  ],
255+  "execution_count" : 8 ,
256+  "outputs" : []
257+  },
258+  {
259+  "cell_type" : " markdown" 
260+  "metadata" : {
261+  "id" : " k-McZVsQBINc" 
262+  },
263+  "source" : [
264+  " ## Training the Multiple Linear Regression model on the Training set" 
265+  ]
266+  },
267+  {
268+  "cell_type" : " code" 
269+  "metadata" : {
270+  "id" : " ywPjx0L1BMiD" 
271+  "outputId" : " 721b8613-3990-468d-c2f0-c828fb4f3b7a" 
272+  "colab" : {
273+  "base_uri" : " https://localhost:8080/" 
274+  "height" : 34 
275+  }
276+  },
277+  "source" : [
278+  " from sklearn.linear_model import LinearRegression\n " 
279+  " regressor = LinearRegression()\n " 
280+  " regressor.fit(X_train, y_train)" 
281+  ],
282+  "execution_count" : 9 ,
283+  "outputs" : [
284+  {
285+  "output_type" : " execute_result" 
286+  "data" : {
287+  "text/plain" : [
288+  " LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)" 
289+  ]
290+  },
291+  "metadata" : {
292+  "tags" : []
293+  },
294+  "execution_count" : 9 
295+  }
296+  ]
297+  },
298+  {
299+  "cell_type" : " markdown" 
300+  "metadata" : {
301+  "id" : " xNkXL1YQBiBT" 
302+  },
303+  "source" : [
304+  " ## Predicting the Test set results" 
305+  ]
306+  },
307+  {
308+  "cell_type" : " code" 
309+  "metadata" : {
310+  "id" : " TQKmwvtdBkyb" 
311+  "outputId" : " 71d3e9ba-a6ef-4e16-9805-664f2a1b777e" 
312+  "colab" : {
313+  "base_uri" : " https://localhost:8080/" 
314+  "height" : 185 
315+  }
316+  },
317+  "source" : [
318+  " y_pred = regressor.predict(X_test)\n " 
319+  " np.set_printoptions(precision=2)\n " 
320+  " print(np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test),1)),1))" 
321+  ],
322+  "execution_count" : 10 ,
323+  "outputs" : [
324+  {
325+  "output_type" : " stream" 
326+  "text" : [
327+  " [[103015.2 103282.38]\n " 
328+  "  [132582.28 144259.4 ]\n " 
329+  "  [132447.74 146121.95]\n " 
330+  "  [ 71976.1 77798.83]\n " 
331+  "  [178537.48 191050.39]\n " 
332+  "  [116161.24 105008.31]\n " 
333+  "  [ 67851.69 81229.06]\n " 
334+  "  [ 98791.73 97483.56]\n " 
335+  "  [113969.44 110352.25]\n " 
336+  "  [167921.07 166187.94]]\n " 
337+  ],
338+  "name" : " stdout" 
339+  }
340+  ]
341+  }
342+  ]
343+ }
0 commit comments