Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 32438e1

Browse files
sixth commit
1 parent ef1a6e8 commit 32438e1

File tree

1 file changed

+218
-0
lines changed

1 file changed

+218
-0
lines changed

‎Decision_Tree_Regression.ipynb‎

Lines changed: 218 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,218 @@
1+
{
2+
"nbformat": 4,
3+
"nbformat_minor": 0,
4+
"metadata": {
5+
"colab": {
6+
"name": "Decision Tree Regression",
7+
"provenance": [],
8+
"toc_visible": true,
9+
"authorship_tag": "ABX9TyOtWPwvzez0HBdURmm5Khw0",
10+
"include_colab_link": true
11+
},
12+
"kernelspec": {
13+
"name": "python3",
14+
"display_name": "Python 3"
15+
}
16+
},
17+
"cells": [
18+
{
19+
"cell_type": "markdown",
20+
"metadata": {
21+
"id": "view-in-github",
22+
"colab_type": "text"
23+
},
24+
"source": [
25+
"<a href=\"https://colab.research.google.com/github/Lakshaypahuja21/Machine-Learning-Basics/blob/master/Decision_Tree_Regression.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
26+
]
27+
},
28+
{
29+
"cell_type": "markdown",
30+
"metadata": {
31+
"id": "3CnrCTNoG0av"
32+
},
33+
"source": [
34+
"# decision tree regression"
35+
]
36+
},
37+
{
38+
"cell_type": "markdown",
39+
"metadata": {
40+
"id": "5pvfn-spG1NH"
41+
},
42+
"source": [
43+
"## lib\n"
44+
]
45+
},
46+
{
47+
"cell_type": "code",
48+
"metadata": {
49+
"id": "L-AxSbGLG7U8"
50+
},
51+
"source": [
52+
"import numpy as np\n",
53+
"import pandas as pd\n",
54+
"import matplotlib.pyplot as plt\n"
55+
],
56+
"execution_count": 11,
57+
"outputs": []
58+
},
59+
{
60+
"cell_type": "markdown",
61+
"metadata": {
62+
"id": "M6xwaAc_HHYd"
63+
},
64+
"source": [
65+
"## dataset"
66+
]
67+
},
68+
{
69+
"cell_type": "code",
70+
"metadata": {
71+
"id": "FewyCAVzHIhp"
72+
},
73+
"source": [
74+
"df = pd.read_csv('Position_Salaries.csv')\n",
75+
"x = df.iloc[:, 1:-1].values\n",
76+
"y = df.iloc[:, -1].values"
77+
],
78+
"execution_count": 12,
79+
"outputs": []
80+
},
81+
{
82+
"cell_type": "markdown",
83+
"metadata": {
84+
"id": "ySKUWzpYHKeY"
85+
},
86+
"source": [
87+
"## training the decision tree model on full data set"
88+
]
89+
},
90+
{
91+
"cell_type": "code",
92+
"metadata": {
93+
"id": "u1VfOSHDHOKL",
94+
"outputId": "95ee6b0e-fc0e-48c5-9ec2-1a6d62a3b79c",
95+
"colab": {
96+
"base_uri": "https://localhost:8080/"
97+
}
98+
},
99+
"source": [
100+
"from sklearn.tree import DecisionTreeRegressor\n",
101+
"regressor = DecisionTreeRegressor(random_state = 0)\n",
102+
"regressor.fit(x, y)"
103+
],
104+
"execution_count": 13,
105+
"outputs": [
106+
{
107+
"output_type": "execute_result",
108+
"data": {
109+
"text/plain": [
110+
"DecisionTreeRegressor(ccp_alpha=0.0, criterion='mse', max_depth=None,\n",
111+
" max_features=None, max_leaf_nodes=None,\n",
112+
" min_impurity_decrease=0.0, min_impurity_split=None,\n",
113+
" min_samples_leaf=1, min_samples_split=2,\n",
114+
" min_weight_fraction_leaf=0.0, presort='deprecated',\n",
115+
" random_state=0, splitter='best')"
116+
]
117+
},
118+
"metadata": {
119+
"tags": []
120+
},
121+
"execution_count": 13
122+
}
123+
]
124+
},
125+
{
126+
"cell_type": "markdown",
127+
"metadata": {
128+
"id": "sckY6hEpHU1l"
129+
},
130+
"source": [
131+
"## predicting new result"
132+
]
133+
},
134+
{
135+
"cell_type": "code",
136+
"metadata": {
137+
"id": "I-rs4m3OHWm0",
138+
"outputId": "22cffdf9-5b55-448e-aa02-ac91c20a9831",
139+
"colab": {
140+
"base_uri": "https://localhost:8080/"
141+
}
142+
},
143+
"source": [
144+
"regressor.predict([[6.5]])"
145+
],
146+
"execution_count": 14,
147+
"outputs": [
148+
{
149+
"output_type": "execute_result",
150+
"data": {
151+
"text/plain": [
152+
"array([150000.])"
153+
]
154+
},
155+
"metadata": {
156+
"tags": []
157+
},
158+
"execution_count": 14
159+
}
160+
]
161+
},
162+
{
163+
"cell_type": "markdown",
164+
"metadata": {
165+
"id": "Soo32ta4HYAQ"
166+
},
167+
"source": [
168+
"## visualizing decision tree regression (high scale)"
169+
]
170+
},
171+
{
172+
"cell_type": "code",
173+
"metadata": {
174+
"id": "MOOolv7wdK5_",
175+
"outputId": "64efa57d-7850-46c1-8d0d-26fef667dc91",
176+
"colab": {
177+
"base_uri": "https://localhost:8080/",
178+
"height": 295
179+
}
180+
},
181+
"source": [
182+
"x_grid = np.arange(min(x), max(x), 0.1)\n",
183+
"x_grid = x_grid.reshape((len(x_grid), 1))\n",
184+
"plt.scatter(x,y, color = 'red')\n",
185+
"plt.plot(x_grid, regressor.predict(x_grid), color = 'blue')\n",
186+
"plt.title('truth or bluff(decision tree)')\n",
187+
"plt.xlabel('position level')\n",
188+
"plt.ylabel('salary')\n",
189+
"plt.show()"
190+
],
191+
"execution_count": 15,
192+
"outputs": [
193+
{
194+
"output_type": "display_data",
195+
"data": {
196+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deZgcVb3/8fcnCQGCgECiAlmGy6IELyKOiEYvKKgBlCgiEge4cGMiKLigXlE0ItcoCi4oIA47OLKYqASIP1AEeVxAAgqSASRCVlCGsCRkJmT7/v6oGtLp9Mx0T7qme7o+r+eZp7tPnar6TmVS3z6nqs5RRGBmZvk1pNYBmJlZbTkRmJnlnBOBmVnOORGYmeWcE4GZWc45EZiZ5ZwTgWVO0p2SPjZA+2qSFJKG9bD8LEk/LXNbknSFpOck/SUtO0XSvyW9KGmntOxaSR/oTzzlkjRP0sF91BmbxjV0c/ZVC5JmSTqs1nHklROBvUzSAkmHbuY2yj7RDgJvB94NjI6IAyRtAXwPeE9EvCIilknaF3gDcGOWgUTEPhFxZx91FqVxrav2/tNktke1t1vg28A3Mty+9cKJwMq2ud9qq20A4hkHLIiIlennVwNbAfMK6nwcaIucP5m5uf8WEfEXYDtJzVUKySrgRGAASLoGGAvclHYv/G9Bt8YUSYuA30k6WNKSonUXSDpU0kTgy8BH0m08UFBtnKQ/Sloh6TZJI3uJZaqk+ZKelTRb0i4Fy0LSJyU9BjzWy6/0P5KelPSUpM/3sJ/efpcpwKXAW9Pf5Vrg0bTa85J+l74/DPh9wfpDJZ0n6RlJjwNHFG1/e0mXpXEtlfSNwq6c9Hd/OD1O7ZL2L4wrfX+ApLmSlqfdVN9LyzfqhpK0S3r8nk2P59SC/Zwl6QZJV6f7mtfTSVjSXenbB9Jj8ZHuYyfpi5L+BVwhaYikMyT9U9KydPs7FmznQEl/kvS8pAdKdHXdWXy8bIBEhH/8Q0QALAAOLfjcBARwNbANsDVwMLCkp/WAs4CfFi2/E/gnsFe6jTuBc3qI4V3AM8D+wJbAj4C7CpYH8BtgR2DrEut3x3xtGvN/Ah2l4ivjdzkR+EOJbQ9LP2+Tfh5VUOdk4BFgTBrjHUXr/BL4Sbruq4C/AB9Pl30YWAq8GRCwBzCuRFx/Bo5P378COLCH+O4CLiJpxeyXHod3FRyHVcDhwFDgW8DdvfxtBLBHweeDgbUkXTpbpv+unwbuBkanZT8Brk3r7wosS/c3hKTLbVnRsTsd+EWt/x/k8WdQtggkXS7paUkPlVn/mPTb1TxJP8s6vgZ0VkSsjIiuzdjGFRHxj3QbN5CcmEppAS6PiPsj4iXgSyTfypsK6nwrIp7tI56vpzH/HbgCmLwZsffklenrioKyY4AfRMTiiHiW5AQLgKRXk5wIP5PG9jTwfeDYtMrHgO9ExL2RmB8RC0vsdw2wh6SREfFiRNxdXEHSGGAC8MWIWBURfyNp4ZxQUO0PETEnkmsK15Bc66jEeuBrEfFS+m9xMnBmRCxJ/+3OAo5OWyjHAXPS/a2PiN8Ac9Pj0W0FG46pDaBBmQiAK4GJ5VSUtCfJyWRCROwDfCbDuBrV4ips418F7ztJvsmWsgvw8skvIl4k+ea4a4XxFNZZmG632p5PX7ctKNulxL67jQO2AJ5Ku0eeJ/nW/Kp0+RiSllNfppC0rh6RdK+k95WoswvwbEQUJqmFbHwci/9Ntqqwr78jIlYVfB4H/LLgd3sYWEdybWUc8OHuZenytwM7F6y/LRuOqQ2gurr4V66IuKvoGyKSdgcuBEaR/FFPjYhHgKnAhRHxXLru0wMb7aDS0wXPwvKVwIjuD2n/9qgytlGuJ0lOGt3b3wbYiaTLpJJ9jCHpooHk2seTJer09bv0KiJWSuru8upIi59K991tbMH7xcBLwMiIWFtik4uB3cvY72PAZElDgKOAmUpvZS3wJLCjpG0LksFYNj6Om6v432Ex8D8R8cfiipIWA9dExNTiZQX2Bh7oZbllZLC2CEppBU6LiDcBnyfpG4XkP+le6YXKu9MLmlbav4H/6KPOP0i+OR6h5HbKr5D0Bxduoyk9SfXHtcBJkvaTtCXwTeCeiFhQ4Xa+KmmEpH2Ak4DrS9Tp63cpxxzgoILPNwCfkjRa0g7AGd0LIuIp4Dbgu5K2Sy+u7i6pe/1Lgc9LepMSe0gaRxFJx0kaFRHr2fANen1hnYhYDPwJ+JakrZTc5joF6O+tveX8bVwMzOiOWdIoSZPSZT8F3i/pvekF9a3SC86jC9Y/CPh1P+OzzdAQiUDSK4C3AT+X9DeS5nZ3k3MYsCfJxa3JwCWS3A9Z2reAr6RN95J32kTEC8AnSE5aS0m+VRfeefPz9HWZpPsrDSAifgt8FZhF8u16dzb0oVfi98B84HbgvIi4rcS++vpdytEKtEhS+vkS4FaSb7b3A78oqn8CMBxoB54DZpL+rUbEz4EZwM9I+st/RXLBudhEYJ6kF4HzgWN7uF4ymeQC8pMkF6m/lh7f/jgLuCr92zimhzrnA7OB2yStILlw/BZ4OTFNIrmrrIOk9fAF0nOQpDcDL0ZyG6kNMEUMztuf066hmyPi9ZK2Ax6NiJ1L1LuY5BvlFenn24EzIuLegYzXGld6A8INEfGrWscyWEmaBVwWEXNqHUseNUSLICKWA09I+jC8PDRA9x0QvyJpDaDk3vW9gMdrEac1poj4qJPA5omIDzkJ1M6gTARKHu75M/Da9KGWKSS3HU5R8hDTPJJmKCTN9GWS2knu6f5CRCyrRdxmZvVo0HYNmZlZdQzKFoGZmVXPoHuOYOTIkdHU1FTrMMzMBpX77rvvmYgo+ZzMoEsETU1NzJ07t9ZhmJkNKpJKDVcCuGvIzCz3nAjMzHLOicDMLOecCMzMcs6JwMws5zJLBH1NHpMOA/FDJVPoPah0Sj4zMyvS1gZNTTBkSPLa1lbVzWfZIriS3iePOYxkVNA9gWnAjzOMxcxscGprg2nTYOFCiEhep02rajLI7DmCUpPHFJkEXB3JGBd3S3qlpJ3TMdvNzBrSvHlwfanZMXow/arpDOvs3LiwsxPOPBNaWqoSUy0fKNuVjaf0W5KWbZIIJE0jaTUwduzY4sVmZoPGeefBlVfCyzNY9OEr0cMUGYsWVS2mQXGxOCJaI6I5IppHjSp7JkEzs7qzciXsvTesX1/ez/Bxm0yzkqjil+JaJoKlbDy362iqO5+qmVnd6eqCrbaqYIUZM2DEiI3LRoxIyquklolgNnBCevfQgcALvj5gZo1u1aoKE0FLC7S2wrhxSX/SuHHJ5ypdH4AMrxGkk8ccDIyUtAT4GrAFQERcTDLp9+Ek88p2kkwwbmbW0Fatgq23rnCllpaqnviLZXnX0OQ+lgfwyaz2b2ZWj7q6YLvtah3FxgbFxWIzs0ZRcdfQAHAiMDMbQF1d/egaypgTgZnZAHKLwMws5/p1sThjTgRmZgOo4ucIBoATgZnZAIlw15CZWa6tWZMkA3cNmZnlVFdX8uoWgZlZTq1albw6EZiZ5VR3InDXkJlZTrlryMws59w1ZGaWc+4aMjPLOXcNmZnlnFsEZmY55xaBmVnO+WKxmVnOuWvIzCzn3DVkZpZz7hoyM8s5dw2ZmeVcVxcMGQLDhtU6ko05EZiZDZDuaSqlWkeyMScCM7MBUo+zk4ETgZnZgKnH+YrBicDMbMB0dw3VGycCM7MB4haBmVnO+RqBmVnOuWvIzCzn3DVkZpZz7hoyM8u5XHYNSZoo6VFJ8yWdUWL5WEl3SPqrpAclHZ5lPGZmtZS7riFJQ4ELgcOA8cBkSeOLqn0FuCEi3ggcC1yUVTxmZrWWxxbBAcD8iHg8IlYD1wGTiuoEsF36fnvgyQzjMTOrqXq9RpDlGHi7AosLPi8B3lJU5yzgNkmnAdsAh2YYj5lZTeWua6hMk4ErI2I0cDhwjaRNYpI0TdJcSXM7OjoGPEgzs821fj2sXp2/rqGlwJiCz6PTskJTgBsAIuLPwFbAyOINRURrRDRHRPOoUaMyCtfMLDsvvZS85q1FcC+wp6TdJA0nuRg8u6jOIuAQAEl7kyQCf+U3s4ZTr/MVQ4aJICLWAqcCtwIPk9wdNE/S2ZKOTKt9Dpgq6QHgWuDEiIisYjIzq5V6naYSsr1YTETMAeYUlU0veN8OTMgyBjOzepDLFoGZmW1Qzy0CJwIzswHQnQjcIjAzyyl3DZmZ5Zy7hszMcs5dQ2ZmOeeuITOznHPXkJlZzrlryMws59w1ZGaWc+4aMjPLOXcNmZnlXFcXDB8OQ+rwrFuHIZmZNZ56naYSnAjMzAZEvU5TCU4EZmYDYtWq+rxQDE4EZmYDwl1DZmY5564hM7Occ9eQmVnOuWvIzCznurrcIjAzyzW3CMzMcs6JwMws59w1ZGaWc24RmJnlnBOBmVnOuWvIzCzH1q6FdevcIjAzy616nqYSnAjMzDJXz9NUghOBmVnm6nmaSnAiMDPLXHfXkFsEZmY55RaBmVnO5ToRSJoo6VFJ8yWd0UOdYyS1S5on6WdZxmNmVgv13jU0LKsNSxoKXAi8G1gC3CtpdkS0F9TZE/gSMCEinpP0qqziMTOrlTy3CA4A5kfE4xGxGrgOmFRUZypwYUQ8BxART2cYj5lZTeQ5EewKLC74vCQtK7QXsJekP0q6W9LEUhuSNE3SXElzOzo6MgrXzCwb9d41VOuLxcOAPYGDgcnAJZJeWVwpIlojojkimkeNGjXAIZqZbZ48twiWAmMKPo9OywotAWZHxJqIeAL4B0liMDNrGA0xxER64bdS9wJ7StpN0nDgWGB2UZ1fkbQGkDSSpKvo8X7sy8ysbjXKEBOPSTpX0vhyNxwRa4FTgVuBh4EbImKepLMlHZlWuxVYJqkduAP4QkQsqyB+M7O6V+9dQ+XePvoGkm/0l0oaAlwOXBcRy3tbKSLmAHOKyqYXvA/g9PTHzKwhdXWBBMOH1zqS0spqEUTEioi4JCLeBnwR+BrwlKSrJO2RaYRmZoNc9+xkUq0jKa3sawSSjpT0S+AHwHeB/wBuougbv5mZbayep6mE8ruGHiPpwz83Iv5UUD5T0n9VPywzs8ZRz9NUQhmJIL1j6MqIOLvU8oj4VNWjMjNrIPXeIuizaygi1gHvG4BYzMwaUr0ngnK7hv4o6QLgemBld2FE3J9JVGZmDWTQdw2l9ktfC7uHAnhXdcMxM2s8DdEiiIh3Zh2ImVmjWrWqMVoESDoC2Ad4Oa/1dAHZzMw26OqCHXaodRQ9K/c5gouBjwCnAQI+DIzLMC4zs4ZR711D5Y419LaIOAF4LiK+DryVZIA4MzPrQ71fLC43EaSDqNIpaRdgDbBzNiGZmTWWRmkR3JxOGHMucD+wALg2q6DMzOpCWxs0NcGQIclrW1u/NlPviaDcu4b+L307S9LNwFYR8UJ2YZmZVd+6dRVU/tnP4OMnQ1cnIFi4GKaeDOsFH/1oRfut966hXhOBpKN6WUZE/KL6IZmZVd+NN8JRR8H69eWu8dH0p0AXcEL6U6ERIypfZ6D01SJ4fy/LAnAiMLNB4b77IAK+/vUyh4OePp3kNFdMcHZld84PHQon9CN5DJReE0FEnDRQgZiZZamjA3bcMT2/l+Oyq2Hhwk3Lx42DrzbWI1R+oMzMcqGjA0aNqmCFGTNg2jTo7NxQNmJEUt5g/ECZmeVCxYmgpQVaW5MWgJS8trYm5Q2m3BbB2yJiX0kPRsTXJX0X+HWWgZmZVVNHB+y9d4UrtbQ05Im/WLnPEaxKX7sfKFuLHygzs0Gk4hZBjpTbIrip6IGyAC7JLCozsypatw6WLXMi6Em5ieARYF1EzJI0Htgf+FV2YZmZVc+zzya3jjoRlFZu19BXI2KFpLeTTEZzKfDj7MIyM6ueZ55JXp0ISis3EXQ/mH0EcElE3AIMzyYkM7Pq6uhIXp0ISis3ESyV9BOSW0jnSNqygnXNzGrKiaB35Z7MjwFuBd4bEc8DOwJfyCwqM7MqciLoXbmjj3ZSMK5QRDwFPJVVUGZm1dSdCHbaqbZx1Ct375hZw+vogO22gy23rHUk9cmJwMwanh8m650TgZk1PCeC3jkRmFnDcyLoXaaJQNJESY9Kmi/pjF7qfUhSSGrOMh4zyycngt5llggkDQUuBA4DxgOT0+EpiuttC3wauCerWMwsvyKSJ4udCHqWZYvgAGB+RDweEauB64BJJer9H/BtNoxwamZWNcuXw5o1TgS9yTIR7AosLvi8JC17maT9gTHpkBU9kjRN0lxJczu6bwg2MyuDHybrW80uFksaAnwP+FxfdSOiNSKaI6J5lP81zawCTgR9yzIRLAXGFHwenZZ12xZ4PXCnpAXAgcBsXzA2s2pyIuhblongXmBPSbtJGg4cC8zuXhgRL0TEyIhoiogm4G7gyIiYm2FMZpYzTgR9yywRRMRa4FSSweoeBm6IiHmSzpZ0ZFb7NTMr5ETQt3JnKOuXiJgDzCkqm95D3YOzjMXM8qmjA0aMSH6sND9ZbGYNraMDRo6sdRT1zYnAzBqanyrumxOBmTU0J4K+ORGYWUPz8BJ9cyIws4bmFkHfnAjMrGF1diY/TgS9cyIws4blZwjK40RgZg3LiaA8TgRm1rCcCMrjRGBmDcuJoDxOBGbWsJwIyuNEYGYNq6MDttgCttuu1pHUNycCM6s/bW3Q1ARDhiSvbW392kz3MwRSVaNrOJmOPmpmVrG2Npg2LXkAAGDhwuQzQEtLRZvyU8XlcSIws0ytWAFf/jKsXFnmCjdsAZ0/2risE/j4FnB7Zfu+5x54/esrWyePnAjMLFO33goXXAA77wzDyjnjrDywh3Lgt5Xte/hwOPzwytbJIycCM8tUe3vSRz9/fpmTwzT9V9IdVGzcOFiwoNrhGb5YbGYZa2+H3XarYIawGTM2rTxiRFJumXAiMLNMPfwwjB9fwQotLdDamrQApOS1tbXiC8VWPncNmVlm1q6FRx+FiRMrXLGlxSf+AeQWgZll5okn4KWXYO+9ax2J9caJwMwy096evFbUNWQDzonAzDLTnQjcIqhvTgRmlpn2dhgzBrbdttaRWG+cCMwsM+3t7hYaDJwIzCwT69fDI4+4W2gwcCIws0wsWpSMG+cWQf1zIjCzTPiOocHDicDMMuE7hgYPJwIzy0R7O7zmNbDjjrWOxPriRGBmmWhvd2tgsHAiMLOqi/Cto4OJE4GZVd2TTyYzkzkRDA6ZJgJJEyU9Kmm+pDNKLD9dUrukByXdLmlclvGYWR+qNGm87xgaXDJLBJKGAhcChwHjgcmSiv8s/go0R8S+wEzgO1nFY2Z96J40fuHCpG+ne9L4fiQDJ4LBJcv5CA4A5kfE4wCSrgMmAe3dFSLijoL6dwPHZRiPWa68+CJMmJB005Tl2YmwfsHGZZ3ACUPgM5Xte+XK5G6hUaMqW89qI8tEsCuwuODzEuAtvdSfAvy61AJJ04BpAGPHjq1WfGYNbc4cePBBmDwZdtihjBUuuh6ITcvXC475RMX7nzAhmWDM6l9dzFAm6TigGTio1PKIaAVaAZqbm0v8pZpZsVmz4FWvgmuugaFDy1jhlu/0PGn8hZUnAhs8srxYvBQYU/B5dFq2EUmHAmcCR0bESxnGY5YbnZ1wyy1w1FFlJgHwpPE5lmUiuBfYU9JukoYDxwKzCytIeiPwE5Ik8HSGsZjlyq23Jv30H/pQBSt50vjcyqxrKCLWSjoVuBUYClweEfMknQ3MjYjZwLnAK4CfK+lMXBQRR2YVk1lezJoFO+0EB5XsbO2FJ43PpUyvEUTEHGBOUdn0gveHZrl/szx66SW46SY4+mjYYotaR2ODgZ8sNmswv/0tLF+eJAKzcjgRmNWDKj3RCzBzJmy/PRxySNWiswZXF7ePmuVa9xO9nZ3J5+4neqHi/vo1a+DGG+HII2H48CrHaQ3LicAsA1ddBfffX2blK1ZD5zc3LusETlkNf6lsv888A889524hq4wTgVmVLV0KU6bAlluW+a18xQd6KAeurnz/++4L73lP5etZfjkRmFXZZZfBunXJ8A67717GCk1v7PmJ3gULqh2e2SZ8sdisitauTZ7Beu97y0wC4Cd6reacCMyq6JZbkq6hU06pYCU/0Ws1pojBNYZbc3NzzJ07t9ZhmJU0cSLMmwdPPAHD3PFqdUTSfRHRXGqZWwRmVbqH/5//TMb4mTrVScAGF/+5Wr5V8R7+1tZkpM8pU6oco1nGnAisoTz/PPzpTxWscPpvoLNoZLbOtHyH8hNBBFx+OUyaBLvuWsH+zeqAE4E1jLVr4R3vgIceqmStK0sXPw0cUXkMn/xk5euY1ZoTgTWMq65KksAPfwhv6W1S1EKTJsG/ntq0/DU7J2M1VGCbbWCffSpaxawuOBFYQ+jshOnTkwRw6qkVzJV73jEbXyOA5B7+8z4NB2QSqlnd8V1D1hDOPx+efBLOPbfCCdN9D7+ZE4HVUJVu23zmGTjnHHj/+5NrBBVraUmGcli/Pnl1ErCccdeQVc2zzybn0rLMnAmnfwm6OoEdYeGLMPVLsGLLiofOPOssePHFJBmYWeWcCGyzRSR3y/z4x5WsdXT6U6ALOCX9qdDHPgbjx1e+npk5EVgVXHBBkgROPBHe9KYyVzrtNKDU8CaCH/2oov1vvTUce2xFq5hZASeCPGprgzPPhEWLYOzYZJTLfvaL3347fPazyV2Yl12WdPeX5bybeh56+dTKEoGZbR5fLM6b7iEVFi5M+nS6h1Tox4Xaxx+HY46B170OrrmmgiQAHnrZrI64RTCQqvhNHJJb32fMSO52XLOmzJWWvx9iadGGgOOHQIVPxa5alTxEdeONsO22la378u9dxeNhZv2Tj0RQ5RNwv2Oo0uBmADffnHSzL1gAH/xg8muV5fwrKNk3H4ITP11RDBIcf3wFE7AUa2nxid+sDjT+fATFJ2BIuiD6+dDQ6tVw113Jt+Dbb0++FZdl8aJkMJxiw4bBmHLP4ol165KcNn48XHQRHHRQ3+u8rKnJ0yKa5VBv8xE0fovgzDOhs5PLOYnv8rmkrBM4aQv4ZuWbW7IEli9P7lR55zthp53KXPGaO0uXrwXefkLFcey/P3ziE2VOjl5oxozSidF982a51fiJYNEiAHZiGeNp31C+Bhi/V8Wbe8c74Igj4JBDNr3W2au7pvf8TfzqyhNBv7lv3syKNH7XUL10hVS5i8rMrBL5nqqyXm5T9OBmZlanGr9rqJ66QnyXjJnVocZPBOATsJlZLxq/a8jMzHqVaSKQNFHSo5LmSzqjxPItJV2fLr9HUlOW8ZiZ2aYySwSShgIXAocB44HJkooHCp4CPBcRewDfB76dVTxmZlZali2CA4D5EfF4RKwGrgMmFdWZBFyVvp8JHCJVNNGgmZltpiwTwa7A4oLPS9KyknUiYi3wArDJs7qSpkmaK2luR0dHRuGameXToLhrKCJagVYASR2SSjwhNqiMBJ6pdRB1xMdjAx+Ljfl4bGxzjse4nhZkmQiWAmMKPo9Oy0rVWSJpGLA9sKy3jUbEqGoGWQuS5vb0hF8e+Xhs4GOxMR+PjWV1PLLsGroX2FPSbpKGA8cCs4vqzAb+O31/NPC7GGxjXpiZDXKZtQgiYq2kU4FbgaHA5RExT9LZwNyImA1cBlwjaT7wLEmyMDOzAZTpNYKImAPMKSqbXvB+FfDhLGOoU621DqDO+Hhs4GOxMR+PjWVyPAbd6KNmZlZdHmLCzCznnAjMzHLOiWAASRoj6Q5J7ZLmSapstvgGJGmopL9KurnWsdSapFdKminpEUkPS3prrWOqJUmfTf+fPCTpWklb1TqmgSLpcklPS3qooGxHSb+R9Fj6ukO19udEMLDWAp+LiPHAgcAnS4y/lDefBh6udRB14nzg/0XE64A3kOPjImlX4FNAc0S8nuTOwzzdVXglMLGo7Azg9ojYE7g9/VwVTgQDKCKeioj70/crSP6jFw+7kRuSRgNHAJfWOpZak7Q98F8kt1QTEasj4vnaRlVzw4Ct04dNRwBP1jieARMRd5HcUl+ocGy2q4APVGt/TgQ1kg65/UbgntpGUlM/AP4XWF/rQOrAbkAHcEXaVXappG1qHVStRMRS4DxgEfAU8EJE3FbbqGru1RHxVPr+X8Crq7VhJ4IakPQKYBbwmYhYXut4akHS+4CnI+K+WsdSJ4YB+wM/jog3AiupYtN/sEn7vyeRJMhdgG0kHVfbqOpHOgJD1e79dyIYYJK2IEkCbRHxi1rHU0MTgCMlLSAZovxdkn5a25BqagmwJCK6W4gzSRJDXh0KPBERHRGxBvgF8LYax1Rr/5a0M0D6+nS1NuxEMIDSuRYuAx6OiO/VOp5aiogvRcToiGgiuQj4u4jI7Te+iPgXsFjSa9OiQ4D2GoZUa4uAAyWNSP/fHEKOL56nCsdm+2/gxmpt2IlgYE0Ajif59vu39OfwWgdldeM0oE3Sg8B+wDdrHE/NpC2jmcD9wN9JzlW5GW5C0rXAn4HXSloiaQpwDvBuSY+RtJjOqdr+PMSEmVm+uUVgZpZzTgRmZjnnRGBmlnNOBGZmOedEYGaWc04EZgUknSzphPT9iZJ2KVh2aTUGCUy3e8HmbifrbVp+ZDpVpdlgExEXF3w8EXiIdLCziPhYLWIyy5pbBNYQJDWl4/i3pWP5z5Q0Il12SDqQ29/Tcd63TMvPSeeGeFDSeWnZWZI+L+looJnkAa+/Sdpa0p2SmtN6k9PtPSTp2wVxvChphqQHJN0tqdeBwSSNkjRL0r3pzwRJQyQtkPTKgnqPSXp1qfrVP5qWN04E1kheC1wUEXsDy4FPpJOZXAl8JCL+k6QVfIqknYAPAvtExL7ANwo3FBEzgblAS0TsFxFd3cvS7qJvA+8ieQL4zZK6hwTeBrg7It4A3AVM7SPm84HvR8SbgQ8Bl0bEepLhAz6Y7u8twMKI+Hep+pUeJLNiTgTWSBZHxB/T9z8F3k6SHJ6IiH+k5VeRjPv/ArAKuEzSUUBnBft5M3BnOiDaWqAt3SbAaqB7trX7gKY+tnUocIGkv5GMJbNdOjrt9cBH0jrHpp97q2/Wb75GYI2keLyUHsdPiYi1kg4gGUBltTcAAAESSURBVMzsaOBUkm/4m2tNbBi3ZR19/x8bAhwYEasKCyX9GdhD0iiSCUi+0Uf9zQ7c8sstAmskYwvm+f0o8AfgUaBJ0h5p+fHA79Nv0dtHxBzgsyRTQxZbAWxbovwvwEGSRkoaCkwGft/PmG8jGWwOAEn7wcvjzf8S+B7JaLXLeqtvtjmcCKyRPEoyD/TDwA4kk7ysAk4Cfi7p7ySzoV1McoK/OR3p8w/A6SW2dyVwcffF4u7CdJaoM4A7gAeA+yKiv0MCfwpoTi9YtwMnFyy7HjiODd1CfdU36xePPmoNIZ368+Z0onMzq4BbBGZmOecWgZlZzrlFYGaWc04EZmY550RgZpZzTgRmZjnnRGBmlnP/H7mLurSvpK00AAAAAElFTkSuQmCC\n",
197+
"text/plain": [
198+
"<Figure size 432x288 with 1 Axes>"
199+
]
200+
},
201+
"metadata": {
202+
"tags": [],
203+
"needs_background": "light"
204+
}
205+
}
206+
]
207+
},
208+
{
209+
"cell_type": "markdown",
210+
"metadata": {
211+
"id": "NIdwA81eKapK"
212+
},
213+
"source": [
214+
"## not best for 2 variables|"
215+
]
216+
}
217+
]
218+
}

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /