Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

UNet Model has too many non-trainable variables #28

Open
@TillBeemelmanns

Description

I was testing the UNet model along with a mobilenetv2 and saw that there are a lot non-trainable params, which I could not explain. I quick lookup in the model revealed that besides the non-trainable BN params, there are also normal kernels that are marked as non-trainable. I guess this behavior is not desired.

Correct me if I am wrong, but I guess the default trainable parameter should be set to true ?

class Upsample_x2_Block(tf.keras.layers.Layer):
"""
"""
def __init__(self, filters, trainable=None):
super(Upsample_x2_Block, self).__init__()
self.trainable = trainable
Model: "UNet_mobilenetv2_1.00_None"
_________________________________________________________________
Layer (type) Output Shape Param # 
=================================================================
input (InputLayer) [(None, None, None, 3)] 0 
_________________________________________________________________
u_net (UNet) (None, None, None, 30) 15387454 
=================================================================
Total params: 15,387,454
Trainable params: 2,384,222
Non-trainable params: 13,003,232
for variable in model.non_trainable_variables:
 print(variable.name)
u_net/convolution_bn_activation/batch_normalization/moving_mean:0
u_net/convolution_bn_activation/batch_normalization/moving_variance:0
u_net/convolution_bn_activation_1/batch_normalization_1/moving_mean:0
u_net/convolution_bn_activation_1/batch_normalization_1/moving_variance:0
u_net/upsample_x2__block/conv2d/kernel:0
u_net/upsample_x2__block/conv2d/bias:0
u_net/upsample_x2__block/convolution_bn_activation_2/conv2d_2/kernel:0
u_net/upsample_x2__block/convolution_bn_activation_2/conv2d_2/bias:0
u_net/upsample_x2__block/convolution_bn_activation_2/batch_normalization_2/gamma:0
u_net/upsample_x2__block/convolution_bn_activation_2/batch_normalization_2/beta:0
u_net/upsample_x2__block/convolution_bn_activation_2/batch_normalization_2/moving_mean:0
u_net/upsample_x2__block/convolution_bn_activation_2/batch_normalization_2/moving_variance:0
u_net/upsample_x2__block/convolution_bn_activation_3/conv2d_3/kernel:0
u_net/upsample_x2__block/convolution_bn_activation_3/conv2d_3/bias:0
u_net/upsample_x2__block/convolution_bn_activation_3/batch_normalization_3/gamma:0
u_net/upsample_x2__block/convolution_bn_activation_3/batch_normalization_3/beta:0
u_net/upsample_x2__block/convolution_bn_activation_3/batch_normalization_3/moving_mean:0
u_net/upsample_x2__block/convolution_bn_activation_3/batch_normalization_3/moving_variance:0
u_net/upsample_x2__block_1/conv2d_1/kernel:0
u_net/upsample_x2__block_1/conv2d_1/bias:0
u_net/upsample_x2__block_1/convolution_bn_activation_4/conv2d_4/kernel:0
u_net/upsample_x2__block_1/convolution_bn_activation_4/conv2d_4/bias:0
u_net/upsample_x2__block_1/convolution_bn_activation_4/batch_normalization_4/gamma:0
u_net/upsample_x2__block_1/convolution_bn_activation_4/batch_normalization_4/beta:0
u_net/upsample_x2__block_1/convolution_bn_activation_4/batch_normalization_4/moving_mean:0
u_net/upsample_x2__block_1/convolution_bn_activation_4/batch_normalization_4/moving_variance:0
u_net/upsample_x2__block_1/convolution_bn_activation_5/conv2d_5/kernel:0
u_net/upsample_x2__block_1/convolution_bn_activation_5/conv2d_5/bias:0
u_net/upsample_x2__block_1/convolution_bn_activation_5/batch_normalization_5/gamma:0
u_net/upsample_x2__block_1/convolution_bn_activation_5/batch_normalization_5/beta:0
u_net/upsample_x2__block_1/convolution_bn_activation_5/batch_normalization_5/moving_mean:0
u_net/upsample_x2__block_1/convolution_bn_activation_5/batch_normalization_5/moving_variance:0
u_net/upsample_x2__block_2/conv2d_2/kernel:0
u_net/upsample_x2__block_2/conv2d_2/bias:0
u_net/upsample_x2__block_2/convolution_bn_activation_6/conv2d_6/kernel:0
u_net/upsample_x2__block_2/convolution_bn_activation_6/conv2d_6/bias:0
u_net/upsample_x2__block_2/convolution_bn_activation_6/batch_normalization_6/gamma:0
u_net/upsample_x2__block_2/convolution_bn_activation_6/batch_normalization_6/beta:0
u_net/upsample_x2__block_2/convolution_bn_activation_6/batch_normalization_6/moving_mean:0
u_net/upsample_x2__block_2/convolution_bn_activation_6/batch_normalization_6/moving_variance:0
u_net/upsample_x2__block_2/convolution_bn_activation_7/conv2d_7/kernel:0
u_net/upsample_x2__block_2/convolution_bn_activation_7/conv2d_7/bias:0
u_net/upsample_x2__block_2/convolution_bn_activation_7/batch_normalization_7/gamma:0
u_net/upsample_x2__block_2/convolution_bn_activation_7/batch_normalization_7/beta:0
u_net/upsample_x2__block_2/convolution_bn_activation_7/batch_normalization_7/moving_mean:0
u_net/upsample_x2__block_2/convolution_bn_activation_7/batch_normalization_7/moving_variance:0
u_net/upsample_x2__block_3/conv2d_3/kernel:0
u_net/upsample_x2__block_3/conv2d_3/bias:0
u_net/upsample_x2__block_3/convolution_bn_activation_8/conv2d_8/kernel:0
u_net/upsample_x2__block_3/convolution_bn_activation_8/conv2d_8/bias:0
u_net/upsample_x2__block_3/convolution_bn_activation_8/batch_normalization_8/gamma:0
u_net/upsample_x2__block_3/convolution_bn_activation_8/batch_normalization_8/beta:0
u_net/upsample_x2__block_3/convolution_bn_activation_8/batch_normalization_8/moving_mean:0
u_net/upsample_x2__block_3/convolution_bn_activation_8/batch_normalization_8/moving_variance:0
u_net/upsample_x2__block_3/convolution_bn_activation_9/conv2d_9/kernel:0
u_net/upsample_x2__block_3/convolution_bn_activation_9/conv2d_9/bias:0
u_net/upsample_x2__block_3/convolution_bn_activation_9/batch_normalization_9/gamma:0
u_net/upsample_x2__block_3/convolution_bn_activation_9/batch_normalization_9/beta:0
u_net/upsample_x2__block_3/convolution_bn_activation_9/batch_normalization_9/moving_mean:0
u_net/upsample_x2__block_3/convolution_bn_activation_9/batch_normalization_9/moving_variance:0
u_net/upsample_x2__block_4/conv2d_4/kernel:0
u_net/upsample_x2__block_4/conv2d_4/bias:0
u_net/upsample_x2__block_4/convolution_bn_activation_10/conv2d_10/kernel:0
u_net/upsample_x2__block_4/convolution_bn_activation_10/conv2d_10/bias:0
u_net/upsample_x2__block_4/convolution_bn_activation_10/batch_normalization_10/gamma:0
u_net/upsample_x2__block_4/convolution_bn_activation_10/batch_normalization_10/beta:0
u_net/upsample_x2__block_4/convolution_bn_activation_10/batch_normalization_10/moving_mean:0
u_net/upsample_x2__block_4/convolution_bn_activation_10/batch_normalization_10/moving_variance:0
u_net/upsample_x2__block_4/convolution_bn_activation_11/conv2d_11/kernel:0
u_net/upsample_x2__block_4/convolution_bn_activation_11/conv2d_11/bias:0
u_net/upsample_x2__block_4/convolution_bn_activation_11/batch_normalization_11/gamma:0
u_net/upsample_x2__block_4/convolution_bn_activation_11/batch_normalization_11/beta:0
u_net/upsample_x2__block_4/convolution_bn_activation_11/batch_normalization_11/moving_mean:0
u_net/upsample_x2__block_4/convolution_bn_activation_11/batch_normalization_11/moving_variance:0

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

      Relationships

      None yet

      Development

      No branches or pull requests

      Issue actions

        AltStyle によって変換されたページ (->オリジナル) /