|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "### PageRank算法\n", |
| 8 | + "以下图所示的有向图为例,计算每个结点的PR:\n", |
| 9 | + "<img style=\"float: center;\" src=\"directed_graph.png\" width=\"20%\">" |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "code", |
| 14 | + "execution_count": 26, |
| 15 | + "metadata": {}, |
| 16 | + "outputs": [], |
| 17 | + "source": [ |
| 18 | + "import numpy as np\n", |
| 19 | + "\n", |
| 20 | + "\n", |
| 21 | + "n = 7 #有向图中一共有7个节点\n", |
| 22 | + "d = 0.85 #阻尼因子根据经验值确定,这里我们随意给一个值\n", |
| 23 | + "M = np.array([[0, 1/4, 1/3, 0, 0, 1/2, 0],\n", |
| 24 | + " [1/4, 0, 0, 1/5, 0, 0, 0],\n", |
| 25 | + " [0, 1/4, 0, 1/5, 1/4, 0, 0],\n", |
| 26 | + " [0, 0, 1/3, 0, 1/4, 0, 0],\n", |
| 27 | + " [1/4, 0, 0, 1/5, 0, 0, 0],\n", |
| 28 | + " [1/4, 1/4, 0, 1/5, 1/4, 0, 0],\n", |
| 29 | + " [1/4, 1/4, 1/3, 1/5, 1/4, 1/2, 0]]) #根据有向图中各节点的连接情况写出转移矩阵\n", |
| 30 | + "R0 = np.full((7, 1), 1/7) #设置初始向量R0,R0是一个7*1的列向量,因为有7个节点,我们把R0的每一个值都设为1/7\n", |
| 31 | + "eps = 0.000001 #设置计算精度" |
| 32 | + ] |
| 33 | + }, |
| 34 | + { |
| 35 | + "cell_type": "markdown", |
| 36 | + "metadata": {}, |
| 37 | + "source": [ |
| 38 | + "### 1. PageRank的迭代算法" |
| 39 | + ] |
| 40 | + }, |
| 41 | + { |
| 42 | + "cell_type": "code", |
| 43 | + "execution_count": 27, |
| 44 | + "metadata": {}, |
| 45 | + "outputs": [], |
| 46 | + "source": [ |
| 47 | + "t = 0 #用来累计迭代次数\n", |
| 48 | + "R = R0 #对R向量进行初始化\n", |
| 49 | + "judge = False #用来判断是否继续迭代\n", |
| 50 | + "while not judge:\n", |
| 51 | + " next_R = d * np.matmul(M, R) + (1 - d) / n * np.ones((7, 1)) #计算新的R向量\n", |
| 52 | + " diff = np.linalg.norm(R - next_R) #计算新的R向量与之前的R向量之间的距离,这里采用的是欧氏距离\n", |
| 53 | + " if diff < eps: #若两向量之间的距离足够小\n", |
| 54 | + " judge = True #则停止迭代\n", |
| 55 | + " R = next_R #更新R向量\n", |
| 56 | + " t += 1 #迭代次数加一\n", |
| 57 | + "R = R / np.sum(R) #对R向量进行规范化,保证其总和为1,表示各节点的概率分布" |
| 58 | + ] |
| 59 | + }, |
| 60 | + { |
| 61 | + "cell_type": "code", |
| 62 | + "execution_count": 28, |
| 63 | + "metadata": {}, |
| 64 | + "outputs": [ |
| 65 | + { |
| 66 | + "name": "stdout", |
| 67 | + "output_type": "stream", |
| 68 | + "text": [ |
| 69 | + "迭代次数: 24\n", |
| 70 | + "PageRank: \n", |
| 71 | + " [[0.17030305]\n", |
| 72 | + " [0.10568394]\n", |
| 73 | + " [0.11441021]\n", |
| 74 | + " [0.10629792]\n", |
| 75 | + " [0.10568394]\n", |
| 76 | + " [0.15059975]\n", |
| 77 | + " [0.24702119]]\n" |
| 78 | + ] |
| 79 | + } |
| 80 | + ], |
| 81 | + "source": [ |
| 82 | + "print('迭代次数:', t)\n", |
| 83 | + "print('PageRank: \\n', R)" |
| 84 | + ] |
| 85 | + }, |
| 86 | + { |
| 87 | + "cell_type": "markdown", |
| 88 | + "metadata": {}, |
| 89 | + "source": [ |
| 90 | + "### 1. PageRank的幂法" |
| 91 | + ] |
| 92 | + }, |
| 93 | + { |
| 94 | + "cell_type": "code", |
| 95 | + "execution_count": 29, |
| 96 | + "metadata": {}, |
| 97 | + "outputs": [], |
| 98 | + "source": [ |
| 99 | + "t = 0 #用来累计迭代次数\n", |
| 100 | + "x = R0 #对x向量进行初始化\n", |
| 101 | + "judge = False #用来判断是否继续迭代\n", |
| 102 | + "A = d * M + (1 - d) / n * np.eye(n) #计算A矩阵,其中np.eye(n)用来创建n阶单位阵E\n", |
| 103 | + "while not judge:\n", |
| 104 | + " next_y = np.matmul(A, x) #计算新的y向量\n", |
| 105 | + " next_x = next_y / np.linalg.norm(next_y) #对新的y向量规范化得到新的x向量\n", |
| 106 | + " diff = np.linalg.norm(x - next_x) #计算新的x向量与之前的x向量之间的距离,这里采用的是欧氏距离\n", |
| 107 | + " if diff < eps: #若两向量之间的距离足够小\n", |
| 108 | + " judge = True #则停止迭代\n", |
| 109 | + " R = x #得到R向量\n", |
| 110 | + " x = next_x #更新x向量\n", |
| 111 | + " t += 1 #迭代次数加一\n", |
| 112 | + "R = R / np.sum(R) #对R向量进行规范化,保证其总和为1,表示各节点的概率分布" |
| 113 | + ] |
| 114 | + }, |
| 115 | + { |
| 116 | + "cell_type": "code", |
| 117 | + "execution_count": 30, |
| 118 | + "metadata": {}, |
| 119 | + "outputs": [ |
| 120 | + { |
| 121 | + "name": "stdout", |
| 122 | + "output_type": "stream", |
| 123 | + "text": [ |
| 124 | + "迭代次数: 25\n", |
| 125 | + "PageRank: \n", |
| 126 | + " [[0.18860772]\n", |
| 127 | + " [0.09038084]\n", |
| 128 | + " [0.0875305 ]\n", |
| 129 | + " [0.07523049]\n", |
| 130 | + " [0.09038084]\n", |
| 131 | + " [0.15604764]\n", |
| 132 | + " [0.31182196]]\n" |
| 133 | + ] |
| 134 | + } |
| 135 | + ], |
| 136 | + "source": [ |
| 137 | + "print('迭代次数:', t)\n", |
| 138 | + "print('PageRank: \\n', R)" |
| 139 | + ] |
| 140 | + }, |
| 141 | + { |
| 142 | + "cell_type": "code", |
| 143 | + "execution_count": null, |
| 144 | + "metadata": {}, |
| 145 | + "outputs": [], |
| 146 | + "source": [] |
| 147 | + } |
| 148 | + ], |
| 149 | + "metadata": { |
| 150 | + "kernelspec": { |
| 151 | + "display_name": "Python 3", |
| 152 | + "language": "python", |
| 153 | + "name": "python3" |
| 154 | + }, |
| 155 | + "language_info": { |
| 156 | + "codemirror_mode": { |
| 157 | + "name": "ipython", |
| 158 | + "version": 3 |
| 159 | + }, |
| 160 | + "file_extension": ".py", |
| 161 | + "mimetype": "text/x-python", |
| 162 | + "name": "python", |
| 163 | + "nbconvert_exporter": "python", |
| 164 | + "pygments_lexer": "ipython3", |
| 165 | + "version": "3.7.3" |
| 166 | + } |
| 167 | + }, |
| 168 | + "nbformat": 4, |
| 169 | + "nbformat_minor": 2 |
| 170 | +} |
0 commit comments