|
376 | 376 | }, |
377 | 377 | { |
378 | 378 | "cell_type": "code", |
379 | | - "execution_count": 8, |
| 379 | + "execution_count": 9, |
380 | 380 | "metadata": { |
381 | 381 | "_cell_guid": "7bffeec0-5bbc-fffb-18f2-3da56b862ca3" |
382 | 382 | }, |
383 | 383 | "outputs": [ |
384 | 384 | { |
385 | | - "ename": "OptionError", |
386 | | - "evalue": "'Pattern matched multiple keys'", |
387 | | - "output_type": "error", |
388 | | - "traceback": [ |
389 | | - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", |
390 | | - "\u001b[1;31mOptionError\u001b[0m Traceback (most recent call last)", |
391 | | - "Cell \u001b[1;32mIn[8], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[39m# describe data\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m set_option(\u001b[39m'\u001b[39;49m\u001b[39mprecision\u001b[39;49m\u001b[39m'\u001b[39;49m, \u001b[39m3\u001b[39;49m)\n\u001b[0;32m 3\u001b[0m dataset\u001b[39m.\u001b[39mdescribe()\n", |
392 | | - "File \u001b[1;32mc:\\Users\\steph\\OneDrive\\Documents\\40-ML-going-forward\\26-unsupervised-learning-clustering\\container\\unsupervised-learning-clustering\\.venv\\lib\\site-packages\\pandas\\_config\\config.py:261\u001b[0m, in \u001b[0;36mCallableDynamicDoc.__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 260\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__call__\u001b[39m(\u001b[39mself\u001b[39m, \u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwds) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m T:\n\u001b[1;32m--> 261\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m\u001b[39m__func__\u001b[39m(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwds)\n", |
393 | | - "File \u001b[1;32mc:\\Users\\steph\\OneDrive\\Documents\40円-ML-going-forward\26円-unsupervised-learning-clustering\\container\\unsupervised-learning-clustering\\.venv\\lib\\site-packages\\pandas\\_config\\config.py:156\u001b[0m, in \u001b[0;36m_set_option\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 153\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mTypeError\u001b[39;00m(\u001b[39mf\u001b[39m\u001b[39m'\u001b[39m\u001b[39m_set_option() got an unexpected keyword argument \u001b[39m\u001b[39m\"\u001b[39m\u001b[39m{\u001b[39;00mkwarg\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m\u001b[39m'\u001b[39m)\n\u001b[0;32m 155\u001b[0m \u001b[39mfor\u001b[39;00m k, v \u001b[39min\u001b[39;00m \u001b[39mzip\u001b[39m(args[::\u001b[39m2\u001b[39m], args[\u001b[39m1\u001b[39m::\u001b[39m2\u001b[39m]):\n\u001b[1;32m--> 156\u001b[0m key \u001b[39m=\u001b[39m _get_single_key(k, silent)\n\u001b[0;32m 158\u001b[0m o \u001b[39m=\u001b[39m _get_registered_option(key)\n\u001b[0;32m 159\u001b[0m \u001b[39mif\u001b[39;00m o \u001b[39mand\u001b[39;00m o\u001b[39m.\u001b[39mvalidator:\n", |
394 | | - "File \u001b[1;32mc:\\Users\\steph\\OneDrive\\Documents\40円-ML-going-forward\26円-unsupervised-learning-clustering\\container\\unsupervised-learning-clustering\\.venv\\lib\\site-packages\\pandas\\_config\\config.py:123\u001b[0m, in \u001b[0;36m_get_single_key\u001b[1;34m(pat, silent)\u001b[0m\n\u001b[0;32m 121\u001b[0m \u001b[39mraise\u001b[39;00m OptionError(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mNo such keys(s): \u001b[39m\u001b[39m{\u001b[39;00m\u001b[39mrepr\u001b[39m(pat)\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m)\n\u001b[0;32m 122\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mlen\u001b[39m(keys) \u001b[39m>\u001b[39m \u001b[39m1\u001b[39m:\n\u001b[1;32m--> 123\u001b[0m \u001b[39mraise\u001b[39;00m OptionError(\u001b[39m\"\u001b[39m\u001b[39mPattern matched multiple keys\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[0;32m 124\u001b[0m key \u001b[39m=\u001b[39m keys[\u001b[39m0\u001b[39m]\n\u001b[0;32m 126\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m silent:\n", |
395 | | - "\u001b[1;31mOptionError\u001b[0m: 'Pattern matched multiple keys'" |
396 | | - ] |
| 385 | + "data": { |
| 386 | + "text/html": [ |
| 387 | + "<div>\n", |
| 388 | + "<style scoped>\n", |
| 389 | + " .dataframe tbody tr th:only-of-type {\n", |
| 390 | + " vertical-align: middle;\n", |
| 391 | + " }\n", |
| 392 | + "\n", |
| 393 | + " .dataframe tbody tr th {\n", |
| 394 | + " vertical-align: top;\n", |
| 395 | + " }\n", |
| 396 | + "\n", |
| 397 | + " .dataframe thead th {\n", |
| 398 | + " text-align: right;\n", |
| 399 | + " }\n", |
| 400 | + "</style>\n", |
| 401 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 402 | + " <thead>\n", |
| 403 | + " <tr style=\"text-align: right;\">\n", |
| 404 | + " <th></th>\n", |
| 405 | + " <th>ID</th>\n", |
| 406 | + " <th>AGE</th>\n", |
| 407 | + " <th>EDUC</th>\n", |
| 408 | + " <th>MARRIED</th>\n", |
| 409 | + " <th>KIDS</th>\n", |
| 410 | + " <th>LIFECL</th>\n", |
| 411 | + " <th>OCCAT</th>\n", |
| 412 | + " <th>RISK</th>\n", |
| 413 | + " <th>HHOUSES</th>\n", |
| 414 | + " <th>WSAVED</th>\n", |
| 415 | + " <th>SPENDMOR</th>\n", |
| 416 | + " <th>NWCAT</th>\n", |
| 417 | + " <th>INCCL</th>\n", |
| 418 | + " </tr>\n", |
| 419 | + " </thead>\n", |
| 420 | + " <tbody>\n", |
| 421 | + " <tr>\n", |
| 422 | + " <th>count</th>\n", |
| 423 | + " <td>3866.000</td>\n", |
| 424 | + " <td>3866.000</td>\n", |
| 425 | + " <td>3866.000</td>\n", |
| 426 | + " <td>3866.000</td>\n", |
| 427 | + " <td>3866.000</td>\n", |
| 428 | + " <td>3866.000</td>\n", |
| 429 | + " <td>3866.000</td>\n", |
| 430 | + " <td>3866.000</td>\n", |
| 431 | + " <td>3866.000</td>\n", |
| 432 | + " <td>3866.000</td>\n", |
| 433 | + " <td>3866.000</td>\n", |
| 434 | + " <td>3866.000</td>\n", |
| 435 | + " <td>3866.000</td>\n", |
| 436 | + " </tr>\n", |
| 437 | + " <tr>\n", |
| 438 | + " <th>mean</th>\n", |
| 439 | + " <td>1933.500</td>\n", |
| 440 | + " <td>3.107</td>\n", |
| 441 | + " <td>2.906</td>\n", |
| 442 | + " <td>1.353</td>\n", |
| 443 | + " <td>0.938</td>\n", |
| 444 | + " <td>3.697</td>\n", |
| 445 | + " <td>1.742</td>\n", |
| 446 | + " <td>3.043</td>\n", |
| 447 | + " <td>0.717</td>\n", |
| 448 | + " <td>2.446</td>\n", |
| 449 | + " <td>3.561</td>\n", |
| 450 | + " <td>2.976</td>\n", |
| 451 | + " <td>3.671</td>\n", |
| 452 | + " </tr>\n", |
| 453 | + " <tr>\n", |
| 454 | + " <th>std</th>\n", |
| 455 | + " <td>1116.162</td>\n", |
| 456 | + " <td>1.513</td>\n", |
| 457 | + " <td>1.066</td>\n", |
| 458 | + " <td>0.478</td>\n", |
| 459 | + " <td>1.249</td>\n", |
| 460 | + " <td>1.618</td>\n", |
| 461 | + " <td>0.934</td>\n", |
| 462 | + " <td>0.879</td>\n", |
| 463 | + " <td>0.451</td>\n", |
| 464 | + " <td>0.743</td>\n", |
| 465 | + " <td>1.304</td>\n", |
| 466 | + " <td>1.463</td>\n", |
| 467 | + " <td>1.184</td>\n", |
| 468 | + " </tr>\n", |
| 469 | + " <tr>\n", |
| 470 | + " <th>min</th>\n", |
| 471 | + " <td>1.000</td>\n", |
| 472 | + " <td>1.000</td>\n", |
| 473 | + " <td>1.000</td>\n", |
| 474 | + " <td>1.000</td>\n", |
| 475 | + " <td>0.000</td>\n", |
| 476 | + " <td>1.000</td>\n", |
| 477 | + " <td>1.000</td>\n", |
| 478 | + " <td>1.000</td>\n", |
| 479 | + " <td>0.000</td>\n", |
| 480 | + " <td>1.000</td>\n", |
| 481 | + " <td>1.000</td>\n", |
| 482 | + " <td>1.000</td>\n", |
| 483 | + " <td>1.000</td>\n", |
| 484 | + " </tr>\n", |
| 485 | + " <tr>\n", |
| 486 | + " <th>25%</th>\n", |
| 487 | + " <td>967.250</td>\n", |
| 488 | + " <td>2.000</td>\n", |
| 489 | + " <td>2.000</td>\n", |
| 490 | + " <td>1.000</td>\n", |
| 491 | + " <td>0.000</td>\n", |
| 492 | + " <td>3.000</td>\n", |
| 493 | + " <td>1.000</td>\n", |
| 494 | + " <td>2.000</td>\n", |
| 495 | + " <td>0.000</td>\n", |
| 496 | + " <td>2.000</td>\n", |
| 497 | + " <td>2.000</td>\n", |
| 498 | + " <td>2.000</td>\n", |
| 499 | + " <td>3.000</td>\n", |
| 500 | + " </tr>\n", |
| 501 | + " <tr>\n", |
| 502 | + " <th>50%</th>\n", |
| 503 | + " <td>1933.500</td>\n", |
| 504 | + " <td>3.000</td>\n", |
| 505 | + " <td>3.000</td>\n", |
| 506 | + " <td>1.000</td>\n", |
| 507 | + " <td>0.000</td>\n", |
| 508 | + " <td>3.000</td>\n", |
| 509 | + " <td>1.000</td>\n", |
| 510 | + " <td>3.000</td>\n", |
| 511 | + " <td>1.000</td>\n", |
| 512 | + " <td>3.000</td>\n", |
| 513 | + " <td>4.000</td>\n", |
| 514 | + " <td>3.000</td>\n", |
| 515 | + " <td>4.000</td>\n", |
| 516 | + " </tr>\n", |
| 517 | + " <tr>\n", |
| 518 | + " <th>75%</th>\n", |
| 519 | + " <td>2899.750</td>\n", |
| 520 | + " <td>4.000</td>\n", |
| 521 | + " <td>4.000</td>\n", |
| 522 | + " <td>2.000</td>\n", |
| 523 | + " <td>2.000</td>\n", |
| 524 | + " <td>5.000</td>\n", |
| 525 | + " <td>3.000</td>\n", |
| 526 | + " <td>4.000</td>\n", |
| 527 | + " <td>1.000</td>\n", |
| 528 | + " <td>3.000</td>\n", |
| 529 | + " <td>5.000</td>\n", |
| 530 | + " <td>4.000</td>\n", |
| 531 | + " <td>5.000</td>\n", |
| 532 | + " </tr>\n", |
| 533 | + " <tr>\n", |
| 534 | + " <th>max</th>\n", |
| 535 | + " <td>3866.000</td>\n", |
| 536 | + " <td>6.000</td>\n", |
| 537 | + " <td>4.000</td>\n", |
| 538 | + " <td>2.000</td>\n", |
| 539 | + " <td>8.000</td>\n", |
| 540 | + " <td>6.000</td>\n", |
| 541 | + " <td>4.000</td>\n", |
| 542 | + " <td>4.000</td>\n", |
| 543 | + " <td>1.000</td>\n", |
| 544 | + " <td>3.000</td>\n", |
| 545 | + " <td>5.000</td>\n", |
| 546 | + " <td>5.000</td>\n", |
| 547 | + " <td>5.000</td>\n", |
| 548 | + " </tr>\n", |
| 549 | + " </tbody>\n", |
| 550 | + "</table>\n", |
| 551 | + "</div>" |
| 552 | + ], |
| 553 | + "text/plain": [ |
| 554 | + " ID AGE EDUC MARRIED KIDS LIFECL OCCAT RISK HHOUSES \n", |
| 555 | + "count 3866.000 3866.000 3866.000 3866.000 3866.000 3866.000 3866.000 3866.000 3866.000 \\\n", |
| 556 | + "mean 1933.500 3.107 2.906 1.353 0.938 3.697 1.742 3.043 0.717 \n", |
| 557 | + "std 1116.162 1.513 1.066 0.478 1.249 1.618 0.934 0.879 0.451 \n", |
| 558 | + "min 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.000 \n", |
| 559 | + "25% 967.250 2.000 2.000 1.000 0.000 3.000 1.000 2.000 0.000 \n", |
| 560 | + "50% 1933.500 3.000 3.000 1.000 0.000 3.000 1.000 3.000 1.000 \n", |
| 561 | + "75% 2899.750 4.000 4.000 2.000 2.000 5.000 3.000 4.000 1.000 \n", |
| 562 | + "max 3866.000 6.000 4.000 2.000 8.000 6.000 4.000 4.000 1.000 \n", |
| 563 | + "\n", |
| 564 | + " WSAVED SPENDMOR NWCAT INCCL \n", |
| 565 | + "count 3866.000 3866.000 3866.000 3866.000 \n", |
| 566 | + "mean 2.446 3.561 2.976 3.671 \n", |
| 567 | + "std 0.743 1.304 1.463 1.184 \n", |
| 568 | + "min 1.000 1.000 1.000 1.000 \n", |
| 569 | + "25% 2.000 2.000 2.000 3.000 \n", |
| 570 | + "50% 3.000 4.000 3.000 4.000 \n", |
| 571 | + "75% 3.000 5.000 4.000 5.000 \n", |
| 572 | + "max 3.000 5.000 5.000 5.000 " |
| 573 | + ] |
| 574 | + }, |
| 575 | + "execution_count": 9, |
| 576 | + "metadata": {}, |
| 577 | + "output_type": "execute_result" |
397 | 578 | } |
398 | 579 | ], |
399 | 580 | "source": [ |
400 | 581 | "# describe data\n", |
401 | | - "set_option('precision', 3)\n", |
| 582 | + "set_option('display.precision', 3)\n", |
402 | 583 | "dataset.describe()" |
403 | 584 | ] |
404 | 585 | }, |
|
0 commit comments