Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Machine learning #2

Open
Open
@lalithapulapa81

Description

Step 1: Import libraries

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

Step 2: Load dataset

Example: SMS Spam Collection dataset (you can download as spam.csv)

data = pd.read_csv("spam.csv", encoding="latin-1")[["v1", "v2"]]
data.columns = ["label", "message"]

Step 3: Encode labels (ham = 0, spam = 1)

data["label"] = data["label"].map({"ham": 0, "spam": 1})

Step 4: Split dataset

X_train, X_test, y_train, y_test = train_test_split(
data["message"], data["label"], test_size=0.2, random_state=42
)

Step 5: Convert text to numerical features using TF-IDF

vectorizer = TfidfVectorizer(stop_words="english")
X_train_tfidf = vectorizer.fit_transform(X_train)
X_test_tfidf = vectorizer.transform(X_test)

Step 6: Train model (Naive Bayes)

model = MultinomialNB()
model.fit(X_train_tfidf, y_train)

Step 7: Predict

y_pred = model.predict(X_test_tfidf)

Step 8: Evaluate

print("✅ Accuracy:", accuracy_score(y_test, y_pred))
print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred))
print("\nClassification Report:\n", classification_report(y_test, y_pred))

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

      Relationships

      None yet

      Development

      No branches or pull requests

      Issue actions

        AltStyle によって変換されたページ (->オリジナル) /