1 /*
2 * Apple ProRes compatible decoder
3 *
4 * Copyright (c) 2010-2011 Maxim Poliakovski
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file
25 * This is a decoder for Apple ProRes 422 SD/HQ/LT/Proxy and ProRes 4444.
26 * It is used for storing and editing high definition video data in Apple's Final Cut Pro.
27 *
28 * @see http://wiki.multimedia.cx/index.php?title=Apple_ProRes
29 */
30
31 #define LONG_BITSTREAM_READER // some ProRes vlc codes require up to 28 bits to be read at once
32
33 #include <stdint.h>
34
42
53
54 typedef struct {
58 int scantable_type;
///< -1 = uninitialized, 0 = progressive, 1/2 = interlaced
59
60 int frame_type; ///< 0 = progressive, 1 = top-field first, 2 = bottom-field first
62 uint8_t qmat_luma[64];
///< dequantization matrix for luma
63 uint8_t qmat_chroma[64];
///< dequantization matrix for chroma
77 int alpha_info;
79
80
82 {
84
87
90
94
95 return 0;
96 }
97
98
101 {
104
106 if (hdr_size > data_size) {
109 }
110
112 if (version >= 2) {
114 "unsupported header version: %d\n", version);
116 }
117
120 if (width != avctx->
width || height != avctx->
height) {
122 "picture dimension changed: old: %d x %d, new: %d x %d\n",
125 }
126
130 "unsupported frame type: %d\n", ctx->
frame_type);
132 }
133
138
142 }
144
146 case 2:
149 break;
150 case 3:
153 break;
154 default:
156 "unsupported picture format: %d\n", ctx->
pic_format);
158 }
159
164 else
168 }
169
173 } else {
175 }
176
180
182 ptr = buf + 20;
183 flags = buf[19];
184 if (flags & 2) {
185 if (ptr - buf > hdr_size - 64) {
188 }
192 }
193 ptr += 64;
194 } else {
197 }
198
199 if (flags & 1) {
200 if (ptr - buf > hdr_size - 64) {
202 return -1;
203 }
207 }
208 } else {
211 }
212
213 return hdr_size;
214 }
215
216
219 {
220 int i, hdr_size, pic_data_size, num_slices;
221 int slice_width_factor, slice_height_factor;
222 int remainder, num_x_slices;
223 const uint8_t *data_ptr, *index_ptr;
224
225 hdr_size = data_size > 0 ? buf[0] >> 3 : 0;
226 if (hdr_size < 8 || hdr_size > data_size) {
229 }
230
231 pic_data_size =
AV_RB32(buf + 1);
232 if (pic_data_size > data_size) {
235 }
236
237 slice_width_factor = buf[7] >> 4;
238 slice_height_factor = buf[7] & 0xF;
239 if (slice_width_factor > 3 || slice_height_factor) {
241 "unsupported slice dimension: %d x %d\n",
242 1 << slice_width_factor, 1 << slice_height_factor);
244 }
245
248
253
254 remainder = ctx->
num_x_mbs & ((1 << slice_width_factor) - 1);
255 num_x_slices = (ctx->
num_x_mbs >> slice_width_factor) + (remainder & 1) +
256 ((remainder >> 1) & 1) + ((remainder >> 2) & 1);
257
258 num_slices = num_x_slices * ctx->
num_y_mbs;
259 if (num_slices !=
AV_RB16(buf + 5)) {
262 }
263
270 }
271
272 if (hdr_size + num_slices * 2 > data_size) {
275 }
276
277 /* parse slice table allowing quick access to the slice data */
278 index_ptr = buf + hdr_size;
279 data_ptr = index_ptr + num_slices * 2;
280
281 for (i = 0; i < num_slices; i++) {
284 data_ptr +=
AV_RB16(index_ptr + i * 2);
285 }
288
289 if (data_ptr > buf + data_size) {
291 return -1;
292 }
293
294 return pic_data_size;
295 }
296
297
298 /**
299 * Read an unsigned rice/exp golomb codeword.
300 */
302 {
303 unsigned int rice_order, exp_order, switch_bits;
304 unsigned int buf, code;
305 int log, prefix_len,
len;
306
310
311 /* number of prefix bits to switch between Rice and expGolomb */
312 switch_bits = (codebook & 3) + 1;
313 rice_order = codebook >> 5; /* rice code order */
314 exp_order = (codebook >> 2) & 7; /* exp golomb code order */
315
316 log = 31 -
av_log2(buf);
/* count prefix bits (zeroes) */
317
318 if (log < switch_bits) { /* ok, we got a rice code */
319 if (!rice_order) {
320 /* shortcut for faster decoding of rice codes without remainder */
321 code = log;
323 } else {
324 prefix_len = log + 1;
325 code = (log << rice_order) +
NEG_USR32(buf << prefix_len, rice_order);
327 }
328 } else { /* otherwise we got a exp golomb code */
329 len = (log << 1) - switch_bits + exp_order + 1;
330 code =
NEG_USR32(buf, len) - (1 << exp_order) + (switch_bits << rice_order);
332 }
333
335
336 return code;
337 }
338
339 #define LSB2SIGN(x) (-((x) & 1))
340 #define TOSIGNED(x) (((x) >> 1) ^ LSB2SIGN(x))
341
342 /**
343 * Decode DC coefficients for all blocks in a slice.
344 */
346 int nblocks)
347 {
348 int16_t prev_dc;
349 int i, sign;
351 unsigned int code;
352
355
356 out += 64; /* move to the DC coeff of the next block */
357 delta = 3;
358
359 for (i = 1; i < nblocks; i++, out += 64) {
361
362 sign = -(((delta >> 15) & 1) ^ (code & 1));
363 delta = (((code + 1) >> 1) ^ sign) - sign;
365 out[0] = prev_dc;
366 }
367 }
368
369
370 /**
371 * Decode AC coefficients for all blocks in a slice.
372 */
374 int blocks_per_slice,
375 int plane_size_factor,
377 {
378 int pos, block_mask,
run,
level, sign, run_cb_index, lev_cb_index;
379 int max_coeffs, bits_left;
380
381 /* set initial prediction values */
382 run = 4;
383 level = 2;
384
385 max_coeffs = blocks_per_slice << 6;
386 block_mask = blocks_per_slice - 1;
387
388 for (pos = blocks_per_slice - 1; pos < max_coeffs;) {
391
393 if (bits_left <= 0 || (bits_left <= 8 && !
show_bits(gb, bits_left)))
394 return 0;
395
397 if (run < 0)
399
401 if (bits_left <= 0 || (bits_left <= 8 && !
show_bits(gb, bits_left)))
403
405 if (level < 0)
407
408 pos += run + 1;
409 if (pos >= max_coeffs)
410 break;
411
413 out[((pos & block_mask) << 6) + scan[pos >> plane_size_factor]] =
414 (level ^ sign) - sign;
415 }
416
417 return 0;
418 }
419
420
421 /**
422 * Decode a slice plane (luma or chroma).
423 */
426 int data_size, uint16_t *out_ptr,
427 int linesize, int mbs_per_slice,
428 int blocks_per_mb, int plane_size_factor,
429 const int16_t *qmat, int is_chroma)
430 {
432 int16_t *block_ptr;
433 int mb_num, blocks_per_slice,
ret;
434
435 blocks_per_slice = mbs_per_slice * blocks_per_mb;
436
437 memset(td->
blocks, 0, 8 * 4 * 64 *
sizeof(*td->
blocks));
438
440
442
445 if (ret < 0)
447
448 /* inverse quantization, inverse transform and output */
450
451 if (!is_chroma) {
452 for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) {
453 ctx->
dsp.
idct_put(out_ptr, linesize, block_ptr, qmat);
454 block_ptr += 64;
455 if (blocks_per_mb > 2) {
456 ctx->
dsp.
idct_put(out_ptr + 8, linesize, block_ptr, qmat);
457 block_ptr += 64;
458 }
459 ctx->
dsp.
idct_put(out_ptr + linesize * 4, linesize, block_ptr, qmat);
460 block_ptr += 64;
461 if (blocks_per_mb > 2) {
462 ctx->
dsp.
idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat);
463 block_ptr += 64;
464 }
465 }
466 } else {
467 for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) {
468 ctx->
dsp.
idct_put(out_ptr, linesize, block_ptr, qmat);
469 block_ptr += 64;
470 ctx->
dsp.
idct_put(out_ptr + linesize * 4, linesize, block_ptr, qmat);
471 block_ptr += 64;
472 if (blocks_per_mb > 2) {
473 ctx->
dsp.
idct_put(out_ptr + 8, linesize, block_ptr, qmat);
474 block_ptr += 64;
475 ctx->
dsp.
idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat);
476 block_ptr += 64;
477 }
478 }
479 }
480 return 0;
481 }
482
483
485 const int num_bits)
486 {
487 const int mask = (1 << num_bits) - 1;
488 int i, idx,
val, alpha_val;
489
490 idx = 0;
492 do {
493 do {
496 else {
497 int sign;
498 val =
get_bits(gb, num_bits == 16 ? 7 : 4);
499 sign = val & 1;
500 val = (val + 2) >> 1;
501 if (sign)
503 }
504 alpha_val = (alpha_val +
val) & mask;
505 if (num_bits == 16)
506 dst[idx++] = alpha_val >> 6;
507 else
508 dst[idx++] = (alpha_val << 2) | (alpha_val >> 6);
509 if (idx >= num_coeffs) {
510 break;
511 }
514 if (!val)
516 if (idx + val > num_coeffs)
517 val = num_coeffs - idx;
518 if (num_bits == 16)
519 for (i = 0; i <
val; i++)
520 dst[idx++] = alpha_val >> 6;
521 else
522 for (i = 0; i <
val; i++)
523 dst[idx++] = (alpha_val << 2) | (alpha_val >> 6);
524 } while (idx < num_coeffs);
525 }
526
527 /**
528 * Decode alpha slice plane.
529 */
532 uint16_t *out_ptr, int linesize,
533 int mbs_per_slice)
534 {
536 int i;
537 uint16_t *block_ptr;
538
539 memset(td->
blocks, 0, 8 * 4 * 64 *
sizeof(*td->
blocks));
540
542
545 else
547
549
550 for (i = 0; i < 16; i++) {
551 memcpy(out_ptr, block_ptr, 16 * mbs_per_slice * sizeof(*out_ptr));
552 out_ptr += linesize >> 1;
553 block_ptr += 16 * mbs_per_slice;
554 }
555 }
556
558 {
561 int mb_x_pos = td->
x_pos;
562 int mb_y_pos = td->
y_pos;
567 uint8_t *y_data, *u_data, *v_data, *a_data;
569 int i, sf, slice_width_factor;
570 int slice_data_size, hdr_size;
571 int y_data_size, u_data_size, v_data_size, a_data_size;
572 int y_linesize, u_linesize, v_linesize, a_linesize;
573 int coff[4];
575
578
579 slice_width_factor =
av_log2(mbs_per_slice);
580
581 y_data = pic->
data[0];
582 u_data = pic->
data[1];
583 v_data = pic->
data[2];
584 a_data = pic->
data[3];
589
592 y_data += y_linesize;
593 u_data += u_linesize;
594 v_data += v_linesize;
595 if (a_data)
596 a_data += a_linesize;
597 }
598 y_linesize <<= 1;
599 u_linesize <<= 1;
600 v_linesize <<= 1;
601 a_linesize <<= 1;
602 }
603 y_data += (mb_y_pos << 4) * y_linesize + (mb_x_pos << 5);
604 u_data += (mb_y_pos << 4) * u_linesize + (mb_x_pos << ctx->
mb_chroma_factor);
605 v_data += (mb_y_pos << 4) * v_linesize + (mb_x_pos << ctx->
mb_chroma_factor);
606 if (a_data)
607 a_data += (mb_y_pos << 4) * a_linesize + (mb_x_pos << 5);
608
609 if (slice_data_size < 6) {
612 }
613
614 /* parse slice header */
615 hdr_size = buf[0] >> 3;
616 coff[0] = hdr_size;
617 y_data_size =
AV_RB16(buf + 2);
618 coff[1] = coff[0] + y_data_size;
619 u_data_size =
AV_RB16(buf + 4);
620 coff[2] = coff[1] + u_data_size;
621 v_data_size = hdr_size > 7 ?
AV_RB16(buf + 6) : slice_data_size - coff[2];
622 coff[3] = coff[2] + v_data_size;
623 a_data_size = ctx->
alpha_info ? slice_data_size - coff[3] : 0;
624
625 /* if V or alpha component size is negative that means that previous
626 component sizes are too large */
627 if (v_data_size < 0 || a_data_size < 0 || hdr_size < 6) {
630 }
631
632 sf = av_clip(buf[1], 1, 224);
633 sf = sf > 128 ? (sf - 96) << 2 : sf;
634
635 /* scale quantization matrixes according with slice's scale factor */
636 /* TODO: this can be SIMD-optimized a lot */
639 for (i = 0; i < 64; i++) {
642 }
643 }
644
645 /* decode luma plane */
647 (uint16_t*) y_data, y_linesize,
648 mbs_per_slice, 4, slice_width_factor + 2,
650
651 if (ret < 0)
653
654 /* decode U chroma plane */
656 (uint16_t*) u_data, u_linesize,
660 if (ret < 0)
662
663 /* decode V chroma plane */
665 (uint16_t*) v_data, v_linesize,
669 if (ret < 0)
671
672 /* decode alpha plane if available */
673 if (a_data && a_data_size)
675 (uint16_t*) a_data, a_linesize,
676 mbs_per_slice);
677
678 return 0;
679 }
680
681
684 {
685 int slice_num, slice_width, x_pos, y_pos;
686
687 slice_num = 0;
688
690 for (y_pos = 0; y_pos < ctx->
num_y_mbs; y_pos++) {
692
693 for (x_pos = 0; x_pos < ctx->
num_x_mbs && slice_width;
694 x_pos += slice_width) {
695 while (ctx->
num_x_mbs - x_pos < slice_width)
696 slice_width >>= 1;
697
702
703 slice_num++;
704 }
705 }
706
710 }
711
712
713 #define MOVE_DATA_PTR(nbytes) buf += (nbytes); buf_size -= (nbytes)
714
717 {
720 int buf_size = avpkt->
size;
721 int frame_hdr_size, pic_num, pic_data_size;
722
726
727 /* check frame atom container */
728 if (buf_size < 28 || buf_size <
AV_RB32(buf) ||
732 }
733
735
737 if (frame_hdr_size < 0)
739
741
743 return -1;
744
747 if (pic_data_size < 0)
749
751 return -1;
752
754 }
755
757 *got_frame = 1;
758
760 }
761
762
764 {
766
768
769 return 0;
770 }
771
772
774 .
name =
"prores_lgpl",
783 };