1 /*
2 * FFT/IFFT transforms
3 * Copyright (c) 2008 Loren Merritt
4 * Copyright (c) 2002 Fabrice Bellard
5 * Partly based on libdjbfft by D. J. Bernstein
6 *
7 * This file is part of FFmpeg.
8 *
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24 /**
25 * @file
26 * FFT/IFFT transforms.
27 */
28
29 #include <stdlib.h>
30 #include <string.h>
34
35 #if CONFIG_FFT_FIXED_32
37 #else /* CONFIG_FFT_FIXED_32 */
38
39 /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
40 #if !CONFIG_HARDCODED_TABLES
54 #endif
56 NULL, NULL, NULL, NULL,
70 };
71
72 #endif /* CONFIG_FFT_FIXED_32 */
73
76
78 {
80 if(n <= 2) return i&1;
81 m = n >> 1;
83 m >>= 1;
86 }
87
89 {
90 #if (!CONFIG_HARDCODED_TABLES) && (!CONFIG_FFT_FIXED_32)
91 int i;
93 double freq = 2*
M_PI/
m;
95 for(i=0; i<=m/4; i++)
96 tab[i] =
FIX15(cos(i*freq));
97 for(i=1; i<m/4; i++)
98 tab[m/2-i] = tab[i];
99 #endif
100 }
101
103 0, 4, 1, 5, 8, 12, 9, 13, 2, 6, 3, 7, 10, 14, 11, 15
104 };
105
107 {
108 if (n <= 32)
109 return i >= 16;
110 else if (i < n/2)
112 else if (i < 3*n/4)
114 else
116 }
117
119 {
120 int i;
122
123 for (i = 0; i <
n; i += 16) {
124 int k;
126 for (k = 0; k < 16; k++)
129
130 } else {
131 for (k = 0; k < 16; k++) {
132 int j = i + k;
133 j = (j & ~7) | ((j >> 1) & 3) | ((j << 2) & 4);
135 }
136 }
137 }
138 }
139
141 {
143
144 if (nbits < 2 || nbits > 16)
145 goto fail;
147 n = 1 << nbits;
148
151 goto fail;
154 goto fail;
157
160 #if CONFIG_MDCT
164 #endif
165
166 #if CONFIG_FFT_FIXED_32
167 {
168 int n=0;
170 }
171 #else /* CONFIG_FFT_FIXED_32 */
172 #if CONFIG_FFT_FLOAT
178 #else
181 #endif
182 for(j=4; j<=nbits; j++) {
184 }
185 #endif /* CONFIG_FFT_FIXED_32 */
186
187
190 } else {
192 j = i;
194 j = (j&~3) | ((j>>1)&1) | ((j<<1)&2);
196 }
197 }
198
199 return 0;
200 fail:
203 return -1;
204 }
205
207 {
208 int j, np;
209 const uint16_t *revtab = s->
revtab;
211 /* TODO: handle split-radix permute in a more optimal way, probably in-place */
212 for(j=0;j<np;j++) s->
tmp_buf[revtab[j]] = z[j];
214 }
215
217 {
220 }
221
222 #if CONFIG_FFT_FIXED_32
223
225
226 int nbits, i,
n, num_transforms,
offset, step;
227 int n4, n2, n34;
228 FFTSample tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
232 const int fft_size = (1 << s->
nbits);
233 int64_t accu;
234
235 num_transforms = (0x2aab >> (16 - s->
nbits)) | 1;
236
237 for (n=0; n<num_transforms; n++){
240
241 tmp1 = tmpz[0].
re + tmpz[1].
re;
242 tmp5 = tmpz[2].
re + tmpz[3].
re;
243 tmp2 = tmpz[0].
im + tmpz[1].
im;
244 tmp6 = tmpz[2].
im + tmpz[3].
im;
245 tmp3 = tmpz[0].
re - tmpz[1].
re;
246 tmp8 = tmpz[2].
im - tmpz[3].
im;
247 tmp4 = tmpz[0].
im - tmpz[1].
im;
248 tmp7 = tmpz[2].
re - tmpz[3].
re;
249
250 tmpz[0].
re = tmp1 + tmp5;
251 tmpz[2].
re = tmp1 - tmp5;
252 tmpz[0].
im = tmp2 + tmp6;
253 tmpz[2].
im = tmp2 - tmp6;
254 tmpz[1].
re = tmp3 + tmp8;
255 tmpz[3].
re = tmp3 - tmp8;
256 tmpz[1].
im = tmp4 - tmp7;
257 tmpz[3].
im = tmp4 + tmp7;
258 }
259
260 if (fft_size < 8)
261 return;
262
263 num_transforms = (num_transforms >> 1) | 1;
264
265 for (n=0; n<num_transforms; n++){
268
269 tmp1 = tmpz[4].
re + tmpz[5].
re;
270 tmp3 = tmpz[6].
re + tmpz[7].
re;
271 tmp2 = tmpz[4].
im + tmpz[5].
im;
272 tmp4 = tmpz[6].
im + tmpz[7].
im;
273 tmp5 = tmp1 + tmp3;
274 tmp7 = tmp1 - tmp3;
275 tmp6 = tmp2 + tmp4;
276 tmp8 = tmp2 - tmp4;
277
278 tmp1 = tmpz[4].
re - tmpz[5].
re;
279 tmp2 = tmpz[4].
im - tmpz[5].
im;
280 tmp3 = tmpz[6].
re - tmpz[7].
re;
281 tmp4 = tmpz[6].
im - tmpz[7].
im;
282
283 tmpz[4].
re = tmpz[0].
re - tmp5;
284 tmpz[0].
re = tmpz[0].
re + tmp5;
285 tmpz[4].
im = tmpz[0].
im - tmp6;
286 tmpz[0].
im = tmpz[0].
im + tmp6;
287 tmpz[6].
re = tmpz[2].
re - tmp8;
288 tmpz[2].
re = tmpz[2].
re + tmp8;
289 tmpz[6].
im = tmpz[2].
im + tmp7;
290 tmpz[2].
im = tmpz[2].
im - tmp7;
291
292 accu = (int64_t)Q31(
M_SQRT1_2)*(tmp1 + tmp2);
293 tmp5 = (
int32_t)((accu + 0x40000000) >> 31);
294 accu = (int64_t)Q31(
M_SQRT1_2)*(tmp3 - tmp4);
295 tmp7 = (
int32_t)((accu + 0x40000000) >> 31);
296 accu = (int64_t)Q31(
M_SQRT1_2)*(tmp2 - tmp1);
297 tmp6 = (
int32_t)((accu + 0x40000000) >> 31);
298 accu = (int64_t)Q31(
M_SQRT1_2)*(tmp3 + tmp4);
299 tmp8 = (
int32_t)((accu + 0x40000000) >> 31);
300 tmp1 = tmp5 + tmp7;
301 tmp3 = tmp5 - tmp7;
302 tmp2 = tmp6 + tmp8;
303 tmp4 = tmp6 - tmp8;
304
305 tmpz[5].
re = tmpz[1].
re - tmp1;
306 tmpz[1].
re = tmpz[1].
re + tmp1;
307 tmpz[5].
im = tmpz[1].
im - tmp2;
308 tmpz[1].
im = tmpz[1].
im + tmp2;
309 tmpz[7].
re = tmpz[3].
re - tmp4;
310 tmpz[3].
re = tmpz[3].
re + tmp4;
311 tmpz[7].
im = tmpz[3].
im + tmp3;
312 tmpz[3].
im = tmpz[3].
im - tmp3;
313 }
314
316 n4 = 4;
317
318 for (nbits=4; nbits<=s->
nbits; nbits++){
319 n2 = 2*n4;
320 n34 = 3*n4;
321 num_transforms = (num_transforms >> 1) | 1;
322
323 for (n=0; n<num_transforms; n++){
326
327 tmp5 = tmpz[ n2].
re + tmpz[n34].
re;
328 tmp1 = tmpz[ n2].
re - tmpz[n34].
re;
329 tmp6 = tmpz[ n2].
im + tmpz[n34].
im;
330 tmp2 = tmpz[ n2].
im - tmpz[n34].
im;
331
332 tmpz[ n2].
re = tmpz[ 0].
re - tmp5;
333 tmpz[ 0].
re = tmpz[ 0].
re + tmp5;
334 tmpz[ n2].
im = tmpz[ 0].
im - tmp6;
335 tmpz[ 0].
im = tmpz[ 0].
im + tmp6;
336 tmpz[n34].
re = tmpz[n4].
re - tmp2;
337 tmpz[ n4].
re = tmpz[n4].
re + tmp2;
338 tmpz[n34].
im = tmpz[n4].
im + tmp1;
339 tmpz[ n4].
im = tmpz[n4].
im - tmp1;
340
343
344 for (i=1; i<n4; i++){
345 w_re = w_re_ptr[0];
346 w_im = w_im_ptr[0];
347 accu = (int64_t)w_re*tmpz[ n2+i].
re;
348 accu += (int64_t)w_im*tmpz[ n2+i].
im;
349 tmp1 = (
int32_t)((accu + 0x40000000) >> 31);
350 accu = (int64_t)w_re*tmpz[ n2+i].
im;
351 accu -= (int64_t)w_im*tmpz[ n2+i].
re;
352 tmp2 = (
int32_t)((accu + 0x40000000) >> 31);
353 accu = (int64_t)w_re*tmpz[n34+i].
re;
354 accu -= (int64_t)w_im*tmpz[n34+i].
im;
355 tmp3 = (
int32_t)((accu + 0x40000000) >> 31);
356 accu = (int64_t)w_re*tmpz[n34+i].
im;
357 accu += (int64_t)w_im*tmpz[n34+i].
re;
358 tmp4 = (
int32_t)((accu + 0x40000000) >> 31);
359
360 tmp5 = tmp1 + tmp3;
361 tmp1 = tmp1 - tmp3;
362 tmp6 = tmp2 + tmp4;
363 tmp2 = tmp2 - tmp4;
364
365 tmpz[ n2+i].
re = tmpz[ i].
re - tmp5;
366 tmpz[ i].
re = tmpz[ i].
re + tmp5;
367 tmpz[ n2+i].
im = tmpz[ i].
im - tmp6;
368 tmpz[ i].
im = tmpz[ i].
im + tmp6;
369 tmpz[n34+i].
re = tmpz[n4+i].
re - tmp2;
370 tmpz[ n4+i].
re = tmpz[n4+i].
re + tmp2;
371 tmpz[n34+i].
im = tmpz[n4+i].
im + tmp1;
372 tmpz[ n4+i].
im = tmpz[n4+i].
im - tmp1;
373
374 w_re_ptr += step;
375 w_im_ptr -= step;
376 }
377 }
378 step >>= 1;
379 n4 <<= 1;
380 }
381 }
382
383 #else /* CONFIG_FFT_FIXED_32 */
384
385 #define BUTTERFLIES(a0,a1,a2,a3) {\
386 BF(t3, t5, t5, t1);\
387 BF(a2.re, a0.re, a0.re, t5);\
388 BF(a3.im, a1.im, a1.im, t3);\
389 BF(t4, t6, t2, t6);\
390 BF(a3.re, a1.re, a1.re, t4);\
391 BF(a2.im, a0.im, a0.im, t6);\
392 }
393
394 // force loading all the inputs before storing any.
395 // this is slightly slower for small data, but avoids store->load aliasing
396 // for addresses separated by large powers of 2.
397 #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
398 FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
399 BF(t3, t5, t5, t1);\
400 BF(a2.re, a0.re, r0, t5);\
401 BF(a3.im, a1.im, i1, t3);\
402 BF(t4, t6, t2, t6);\
403 BF(a3.re, a1.re, r1, t4);\
404 BF(a2.im, a0.im, i0, t6);\
405 }
406
407 #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
408 CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
409 CMUL(t5, t6, a3.re, a3.im, wre, wim);\
410 BUTTERFLIES(a0,a1,a2,a3)\
411 }
412
413 #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
414 t1 = a2.re;\
415 t2 = a2.im;\
416 t5 = a3.re;\
417 t6 = a3.im;\
418 BUTTERFLIES(a0,a1,a2,a3)\
419 }
420
421 /* z[0...8n-1], w[1...2n-1] */
423 static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
424 {\
425 FFTDouble t1, t2, t3, t4, t5, t6;\
426 int o1 = 2*n;\
427 int o2 = 4*n;\
428 int o3 = 6*n;\
429 const FFTSample *wim = wre+o1;\
430 n--;\
431 \
432 TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
433 TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
434 do {\
435 z += 2;\
436 wre += 2;\
437 wim -= 2;\
438 TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
439 TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
440 } while(--n);\
441 }
442
444 #undef BUTTERFLIES
445 #define BUTTERFLIES BUTTERFLIES_BIG
447
448 #define DECL_FFT(n,n2,n4)\
449 static void fft##n(FFTComplex *z)\
450 {\
451 fft##n2(z);\
452 fft##n4(z+n4*2);\
453 fft##n4(z+n4*3);\
454 pass(z,FFT_NAME(ff_cos_##n),n4/2);\
455 }
456
458 {
460
461 BF(t3, t1, z[0].
re, z[1].re);
462 BF(t8, t6, z[3].re, z[2].re);
463 BF(z[2].re, z[0].re, t1, t6);
464 BF(t4, t2, z[0].
im, z[1].im);
465 BF(t7, t5, z[2].im, z[3].im);
466 BF(z[3].im, z[1].im, t4, t8);
467 BF(z[3].re, z[1].re, t3, t7);
468 BF(z[2].im, z[0].im, t2, t5);
469 }
470
472 {
474
476
477 BF(t1, z[5].
re, z[4].re, -z[5].re);
478 BF(t2, z[5].
im, z[4].im, -z[5].im);
479 BF(t5, z[7].re, z[6].re, -z[7].re);
480 BF(t6, z[7].im, z[6].im, -z[7].im);
481
484 }
485
486 #if !CONFIG_SMALL
488 {
492
496
499 TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
500 TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
501 }
502 #else
504 #endif
510 #if !CONFIG_SMALL
511 #define pass pass_big
512 #endif
520
522 fft4,
fft8,
fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
523 fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
524 };
525
527 {
529 }
530 #endif /* CONFIG_FFT_FIXED_32 */