1 /*
2 * Apple ProRes compatible decoder
3 *
4 * Copyright (c) 2010-2011 Maxim Poliakovski
5 *
6 * This file is part of Libav.
7 *
8 * Libav is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * Libav is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with Libav; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file
25 * This is a decoder for Apple ProRes 422 SD/HQ/LT/Proxy and ProRes 4444.
26 * It is used for storing and editing high definition video data in Apple's Final Cut Pro.
27 *
28 * @see http://wiki.multimedia.cx/index.php?title=Apple_ProRes
29 */
30
31 #define LONG_BITSTREAM_READER // some ProRes vlc codes require up to 28 bits to be read at once
32
33 #include <stdint.h>
34
42
53
54 typedef struct {
58 int scantable_type;
///< -1 = uninitialized, 0 = progressive, 1/2 = interlaced
59
60 int frame_type; ///< 0 = progressive, 1 = top-field first, 2 = bottom-field first
62 uint8_t qmat_luma[64];
///< dequantization matrix for luma
63 uint8_t qmat_chroma[64];
///< dequantization matrix for chroma
77 int alpha_info;
79
80
82 {
84
87
90
94
95 return 0;
96 }
97
98
101 {
104
106 if (hdr_size > data_size) {
109 }
110
112 if (version >= 2) {
114 "unsupported header version: %d\n", version);
116 }
117
120 if (width != avctx->
width || height != avctx->
height) {
122 "picture dimension changed: old: %d x %d, new: %d x %d\n",
125 }
126
130 "unsupported frame type: %d\n", ctx->
frame_type);
132 }
133
138
142 }
143
145 case 2:
148 break;
149 case 3:
152 break;
153 default:
155 "unsupported picture format: %d\n", ctx->
pic_format);
157 }
158
163 else
167 }
168
172 } else {
174 }
175
179
181 ptr = buf + 20;
182 flags = buf[19];
183 if (flags & 2) {
184 if (ptr - buf > hdr_size - 64) {
187 }
191 }
192 ptr += 64;
193 } else {
196 }
197
198 if (flags & 1) {
199 if (ptr - buf > hdr_size - 64) {
201 return -1;
202 }
206 }
207 } else {
210 }
211
212 return hdr_size;
213 }
214
215
218 {
219 int i, hdr_size, pic_data_size, num_slices;
220 int slice_width_factor, slice_height_factor;
221 int remainder, num_x_slices;
222 const uint8_t *data_ptr, *index_ptr;
223
224 hdr_size = data_size > 0 ? buf[0] >> 3 : 0;
225 if (hdr_size < 8 || hdr_size > data_size) {
228 }
229
230 pic_data_size =
AV_RB32(buf + 1);
231 if (pic_data_size > data_size) {
234 }
235
236 slice_width_factor = buf[7] >> 4;
237 slice_height_factor = buf[7] & 0xF;
238 if (slice_width_factor > 3 || slice_height_factor) {
240 "unsupported slice dimension: %d x %d\n",
241 1 << slice_width_factor, 1 << slice_height_factor);
243 }
244
247
252
253 remainder = ctx->
num_x_mbs & ((1 << slice_width_factor) - 1);
254 num_x_slices = (ctx->
num_x_mbs >> slice_width_factor) + (remainder & 1) +
255 ((remainder >> 1) & 1) + ((remainder >> 2) & 1);
256
257 num_slices = num_x_slices * ctx->
num_y_mbs;
258 if (num_slices !=
AV_RB16(buf + 5)) {
261 }
262
269 }
270
271 if (hdr_size + num_slices * 2 > data_size) {
274 }
275
276 /* parse slice table allowing quick access to the slice data */
277 index_ptr = buf + hdr_size;
278 data_ptr = index_ptr + num_slices * 2;
279
280 for (i = 0; i < num_slices; i++) {
283 data_ptr +=
AV_RB16(index_ptr + i * 2);
284 }
287
288 if (data_ptr > buf + data_size) {
290 return -1;
291 }
292
293 return pic_data_size;
294 }
295
296
297 /**
298 * Read an unsigned rice/exp golomb codeword.
299 */
301 {
302 unsigned int rice_order, exp_order, switch_bits;
303 unsigned int buf, code;
304 int log, prefix_len,
len;
305
309
310 /* number of prefix bits to switch between Rice and expGolomb */
311 switch_bits = (codebook & 3) + 1;
312 rice_order = codebook >> 5; /* rice code order */
313 exp_order = (codebook >> 2) & 7; /* exp golomb code order */
314
315 log = 31 -
av_log2(buf);
/* count prefix bits (zeroes) */
316
317 if (log < switch_bits) { /* ok, we got a rice code */
318 if (!rice_order) {
319 /* shortcut for faster decoding of rice codes without remainder */
320 code = log;
322 } else {
323 prefix_len = log + 1;
324 code = (log << rice_order) +
NEG_USR32(buf << prefix_len, rice_order);
326 }
327 } else { /* otherwise we got a exp golomb code */
328 len = (log << 1) - switch_bits + exp_order + 1;
329 code =
NEG_USR32(buf, len) - (1 << exp_order) + (switch_bits << rice_order);
331 }
332
334
335 return code;
336 }
337
338 #define LSB2SIGN(x) (-((x) & 1))
339 #define TOSIGNED(x) (((x) >> 1) ^ LSB2SIGN(x))
340
341 /**
342 * Decode DC coefficients for all blocks in a slice.
343 */
345 int nblocks)
346 {
347 int16_t prev_dc;
348 int i, sign;
350 unsigned int code;
351
354
355 out += 64; /* move to the DC coeff of the next block */
356 delta = 3;
357
358 for (i = 1; i < nblocks; i++, out += 64) {
360
361 sign = -(((delta >> 15) & 1) ^ (code & 1));
362 delta = (((code + 1) >> 1) ^ sign) - sign;
364 out[0] = prev_dc;
365 }
366 }
367
368
369 /**
370 * Decode AC coefficients for all blocks in a slice.
371 */
373 int blocks_per_slice,
374 int plane_size_factor,
376 {
377 int pos, block_mask,
run,
level, sign, run_cb_index, lev_cb_index;
378 int max_coeffs, bits_left;
379
380 /* set initial prediction values */
381 run = 4;
382 level = 2;
383
384 max_coeffs = blocks_per_slice << 6;
385 block_mask = blocks_per_slice - 1;
386
387 for (pos = blocks_per_slice - 1; pos < max_coeffs;) {
390
392 if (bits_left <= 0 || (bits_left <= 8 && !
show_bits(gb, bits_left)))
393 return;
394
396
398 if (bits_left <= 0 || (bits_left <= 8 && !
show_bits(gb, bits_left)))
399 return;
400
402
403 pos += run + 1;
404 if (pos >= max_coeffs)
405 break;
406
408 out[((pos & block_mask) << 6) + scan[pos >> plane_size_factor]] =
409 (level ^ sign) - sign;
410 }
411 }
412
413
414 /**
415 * Decode a slice plane (luma or chroma).
416 */
419 int data_size, uint16_t *out_ptr,
420 int linesize, int mbs_per_slice,
421 int blocks_per_mb, int plane_size_factor,
422 const int16_t *qmat, int is_chroma)
423 {
425 int16_t *block_ptr;
426 int mb_num, blocks_per_slice;
427
428 blocks_per_slice = mbs_per_slice * blocks_per_mb;
429
430 memset(td->
blocks, 0, 8 * 4 * 64 *
sizeof(*td->
blocks));
431
433
435
438
439 /* inverse quantization, inverse transform and output */
441
442 if (!is_chroma) {
443 for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) {
444 ctx->
dsp.
idct_put(out_ptr, linesize, block_ptr, qmat);
445 block_ptr += 64;
446 if (blocks_per_mb > 2) {
447 ctx->
dsp.
idct_put(out_ptr + 8, linesize, block_ptr, qmat);
448 block_ptr += 64;
449 }
450 ctx->
dsp.
idct_put(out_ptr + linesize * 4, linesize, block_ptr, qmat);
451 block_ptr += 64;
452 if (blocks_per_mb > 2) {
453 ctx->
dsp.
idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat);
454 block_ptr += 64;
455 }
456 }
457 } else {
458 for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) {
459 ctx->
dsp.
idct_put(out_ptr, linesize, block_ptr, qmat);
460 block_ptr += 64;
461 ctx->
dsp.
idct_put(out_ptr + linesize * 4, linesize, block_ptr, qmat);
462 block_ptr += 64;
463 if (blocks_per_mb > 2) {
464 ctx->
dsp.
idct_put(out_ptr + 8, linesize, block_ptr, qmat);
465 block_ptr += 64;
466 ctx->
dsp.
idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat);
467 block_ptr += 64;
468 }
469 }
470 }
471 }
472
473
475 const int num_bits)
476 {
477 const int mask = (1 << num_bits) - 1;
478 int i, idx,
val, alpha_val;
479
480 idx = 0;
482 do {
483 do {
486 else {
487 int sign;
488 val =
get_bits(gb, num_bits == 16 ? 7 : 4);
489 sign = val & 1;
490 val = (val + 2) >> 1;
491 if (sign)
493 }
494 alpha_val = (alpha_val +
val) & mask;
495 if (num_bits == 16)
496 dst[idx++] = alpha_val >> 6;
497 else
498 dst[idx++] = (alpha_val << 2) | (alpha_val >> 6);
499 if (idx >= num_coeffs)
500 break;
503 if (!val)
505 if (idx + val > num_coeffs)
506 val = num_coeffs - idx;
507 if (num_bits == 16)
508 for (i = 0; i <
val; i++)
509 dst[idx++] = alpha_val >> 6;
510 else
511 for (i = 0; i <
val; i++)
512 dst[idx++] = (alpha_val << 2) | (alpha_val >> 6);
513 } while (idx < num_coeffs);
514 }
515
516 /**
517 * Decode alpha slice plane.
518 */
521 uint16_t *out_ptr, int linesize,
522 int mbs_per_slice)
523 {
525 int i;
526 uint16_t *block_ptr;
527
528 memset(td->
blocks, 0, 8 * 4 * 64 *
sizeof(*td->
blocks));
529
531
534 else
536
538
539 for (i = 0; i < 16; i++) {
540 memcpy(out_ptr, block_ptr, 16 * mbs_per_slice * sizeof(*out_ptr));
541 out_ptr += linesize >> 1;
542 block_ptr += 16 * mbs_per_slice;
543 }
544 }
545
547 {
550 int mb_x_pos = td->
x_pos;
551 int mb_y_pos = td->
y_pos;
556 uint8_t *y_data, *u_data, *v_data, *a_data;
558 int i, sf, slice_width_factor;
559 int slice_data_size, hdr_size;
560 int y_data_size, u_data_size, v_data_size, a_data_size;
561 int y_linesize, u_linesize, v_linesize, a_linesize;
562 int coff[4];
563
566
567 slice_width_factor =
av_log2(mbs_per_slice);
568
569 y_data = pic->
data[0];
570 u_data = pic->
data[1];
571 v_data = pic->
data[2];
572 a_data = pic->
data[3];
577
580 y_data += y_linesize;
581 u_data += u_linesize;
582 v_data += v_linesize;
583 if (a_data)
584 a_data += a_linesize;
585 }
586 y_linesize <<= 1;
587 u_linesize <<= 1;
588 v_linesize <<= 1;
589 a_linesize <<= 1;
590 }
591 y_data += (mb_y_pos << 4) * y_linesize + (mb_x_pos << 5);
592 u_data += (mb_y_pos << 4) * u_linesize + (mb_x_pos << ctx->
mb_chroma_factor);
593 v_data += (mb_y_pos << 4) * v_linesize + (mb_x_pos << ctx->
mb_chroma_factor);
594 if (a_data)
595 a_data += (mb_y_pos << 4) * a_linesize + (mb_x_pos << 5);
596
597 if (slice_data_size < 6) {
600 }
601
602 /* parse slice header */
603 hdr_size = buf[0] >> 3;
604 coff[0] = hdr_size;
605 y_data_size =
AV_RB16(buf + 2);
606 coff[1] = coff[0] + y_data_size;
607 u_data_size =
AV_RB16(buf + 4);
608 coff[2] = coff[1] + u_data_size;
609 v_data_size = hdr_size > 7 ?
AV_RB16(buf + 6) : slice_data_size - coff[2];
610 coff[3] = coff[2] + v_data_size;
611 a_data_size = slice_data_size - coff[3];
612
613 /* if V or alpha component size is negative that means that previous
614 component sizes are too large */
615 if (v_data_size < 0 || a_data_size < 0 || hdr_size < 6) {
618 }
619
620 sf = av_clip(buf[1], 1, 224);
621 sf = sf > 128 ? (sf - 96) << 2 : sf;
622
623 /* scale quantization matrixes according with slice's scale factor */
624 /* TODO: this can be SIMD-optimized a lot */
627 for (i = 0; i < 64; i++) {
630 }
631 }
632
633 /* decode luma plane */
635 (uint16_t*) y_data, y_linesize,
636 mbs_per_slice, 4, slice_width_factor + 2,
638
639 /* decode U chroma plane */
641 (uint16_t*) u_data, u_linesize,
645
646 /* decode V chroma plane */
648 (uint16_t*) v_data, v_linesize,
652
653 /* decode alpha plane if available */
654 if (a_data && a_data_size)
656 (uint16_t*) a_data, a_linesize,
657 mbs_per_slice);
658
659 return 0;
660 }
661
662
665 {
666 int slice_num, slice_width, x_pos, y_pos;
667
668 slice_num = 0;
669
671 for (y_pos = 0; y_pos < ctx->
num_y_mbs; y_pos++) {
673
674 for (x_pos = 0; x_pos < ctx->
num_x_mbs && slice_width;
675 x_pos += slice_width) {
676 while (ctx->
num_x_mbs - x_pos < slice_width)
677 slice_width >>= 1;
678
683
684 slice_num++;
685 }
686 }
687
691 }
692
693
694 #define MOVE_DATA_PTR(nbytes) buf += (nbytes); buf_size -= (nbytes)
695
698 {
701 int buf_size = avpkt->
size;
702 int frame_hdr_size, pic_num, pic_data_size;
703
707
708 /* check frame atom container */
709 if (buf_size < 28 || buf_size <
AV_RB32(buf) ||
713 }
714
716
718 if (frame_hdr_size < 0)
720
722
724 return -1;
725
728 if (pic_data_size < 0)
730
732 return -1;
733
735 }
736
738 *got_frame = 1;
739
741 }
742
743
745 {
747
749
750 return 0;
751 }
752
753
755 .
name =
"prores_lgpl",
764 };