1 /*
2 * Error resilience / concealment
3 *
4 * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file
25 * Error resilience / concealment.
26 */
27
28 #include <limits.h>
29
35
36 /**
37 * @param stride the number of MVs to get to the next row
38 * @param mv_step the number of MVs per row or column in a macroblock
39 */
41 {
44 *mv_step = 4;
46 } else {
47 *mv_step = 2;
49 }
50 }
51
52 /**
53 * Replace the current MB with a flat dc-only version.
54 */
56 uint8_t *dest_cr,
int mb_x,
int mb_y)
57 {
59 int dc, dcu, dcv,
y, i;
60 for (i = 0; i < 4; i++) {
61 dc = s->
dc_val[0][mb_x * 2 + (i & 1) + (mb_y * 2 + (i >> 1)) * s->
b8_stride];
63 dc = 0;
64 else if (dc > 2040)
65 dc = 2040;
66 for (y = 0; y < 8; y++) {
67 int x;
68 for (x = 0; x < 8; x++)
69 dest_y[x + (i & 1) * 8 + (y + (i >> 1) * 8) * linesize[0]] = dc / 8;
70 }
71 }
74 if (dcu < 0)
75 dcu = 0;
76 else if (dcu > 2040)
77 dcu = 2040;
78 if (dcv < 0)
79 dcv = 0;
80 else if (dcv > 2040)
81 dcv = 2040;
82 for (y = 0; y < 8; y++) {
83 int x;
84 for (x = 0; x < 8; x++) {
85 dest_cb[x + y * linesize[1]] = dcu / 8;
86 dest_cr[x + y * linesize[2]] = dcv / 8;
87 }
88 }
89 }
90
92 {
94
95 /* horizontal filter */
96 for (y = 1; y < height - 1; y++) {
97 int prev_dc = data[0 + y *
stride];
98
99 for (x = 1; x < width - 1; x++) {
101 dc = -prev_dc +
102 data[x + y *
stride] * 8 -
104 dc = (dc * 10923 + 32768) >> 16;
105 prev_dc = data[x + y *
stride];
107 }
108 }
109
110 /* vertical filter */
111 for (x = 1; x < width - 1; x++) {
112 int prev_dc = data[x];
113
114 for (y = 1; y < height - 1; y++) {
116
117 dc = -prev_dc +
118 data[x + y *
stride] * 8 -
119 data[x + (y + 1) * stride];
120 dc = (dc * 10923 + 32768) >> 16;
121 prev_dc = data[x + y *
stride];
123 }
124 }
125 }
126
127 /**
128 * guess the dc of blocks which do not have an undamaged dc
129 * @param w width in 8 pixel blocks
130 * @param h height in 8 pixel blocks
131 */
133 int h,
int stride,
int is_luma)
134 {
135 int b_x, b_y;
136 int16_t (*col )[4] =
av_malloc(stride*h*
sizeof( int16_t)*4);
137 uint32_t (*dist)[4] =
av_malloc(stride*h*
sizeof(uint32_t)*4);
138
139 if(!col || !dist) {
141 goto fail;
142 }
143
144 for(b_y=0; b_y<h; b_y++){
147 for(b_x=0; b_x<w; b_x++){
148 int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->
mb_stride;
152 color= dc[b_x + b_y*
stride];
153 distance= b_x;
154 }
156 dist[b_x + b_y*
stride][1]= distance >= 0 ? b_x-distance : 9999;
157 }
158 color= 1024;
159 distance= -1;
160 for(b_x=w-1; b_x>=0; b_x--){
161 int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->
mb_stride;
165 color= dc[b_x + b_y*
stride];
166 distance= b_x;
167 }
169 dist[b_x + b_y*
stride][0]= distance >= 0 ? distance-b_x : 9999;
170 }
171 }
172 for(b_x=0; b_x<w; b_x++){
175 for(b_y=0; b_y<h; b_y++){
176 int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->
mb_stride;
180 color= dc[b_x + b_y*
stride];
181 distance= b_y;
182 }
184 dist[b_x + b_y*
stride][3]= distance >= 0 ? b_y-distance : 9999;
185 }
186 color= 1024;
187 distance= -1;
188 for(b_y=h-1; b_y>=0; b_y--){
189 int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->
mb_stride;
193 color= dc[b_x + b_y*
stride];
194 distance= b_y;
195 }
197 dist[b_x + b_y*
stride][2]= distance >= 0 ? distance-b_y : 9999;
198 }
199 }
200
201 for (b_y = 0; b_y < h; b_y++) {
202 for (b_x = 0; b_x < w; b_x++) {
203 int mb_index, error, j;
204 int64_t guess, weight_sum;
205 mb_index = (b_x >> is_luma) + (b_y >> is_luma) * s->
mb_stride;
207
209 continue; // inter
211 continue; // dc-ok
212
213 weight_sum = 0;
214 guess = 0;
215 for (j = 0; j < 4; j++) {
216 int64_t
weight = 256 * 256 * 256 * 16 /
FFMAX(dist[b_x + b_y*stride][j], 1);
217 guess += weight*(int64_t)col[b_x + b_y*stride][j];
219 }
220 guess = (guess + weight_sum / 2) / weight_sum;
221 dc[b_x + b_y *
stride] = guess;
222 }
223 }
224
225 fail:
228 }
229
230 /**
231 * simple horizontal deblocking filter used for error resilience
232 * @param w width in 8 pixel blocks
233 * @param h height in 8 pixel blocks
234 */
236 int h,
int stride,
int is_luma)
237 {
238 int b_x, b_y, mvx_stride, mvy_stride;
241 mvx_stride >>= is_luma;
242 mvy_stride *= mvx_stride;
243
244 for (b_y = 0; b_y < h; b_y++) {
245 for (b_x = 0; b_x < w - 1; b_x++) {
253 int offset = b_x * 8 + b_y * stride * 8;
254 int16_t *left_mv = s->
cur_pic->
motion_val[0][mvy_stride * b_y + mvx_stride * b_x];
255 int16_t *right_mv = s->
cur_pic->
motion_val[0][mvy_stride * b_y + mvx_stride * (b_x + 1)];
256 if (!(left_damage || right_damage))
257 continue; // both undamaged
258 if ((!left_intra) && (!right_intra) &&
259 FFABS(left_mv[0] - right_mv[0]) +
260 FFABS(left_mv[1] + right_mv[1]) < 2)
261 continue;
262
263 for (y = 0; y < 8; y++) {
265
266 a = dst[offset + 7 + y *
stride] - dst[offset + 6 + y *
stride];
267 b = dst[offset + 8 + y *
stride] - dst[offset + 7 + y *
stride];
268 c = dst[offset + 9 + y *
stride] - dst[offset + 8 + y *
stride];
269
272 if (b < 0)
273 d = -d;
274
275 if (d == 0)
276 continue;
277
278 if (!(left_damage && right_damage))
279 d = d * 16 / 9;
280
281 if (left_damage) {
282 dst[offset + 7 + y *
stride] = cm[dst[offset + 7 + y *
stride] + ((d * 7) >> 4)];
283 dst[offset + 6 + y *
stride] = cm[dst[offset + 6 + y *
stride] + ((d * 5) >> 4)];
284 dst[offset + 5 + y *
stride] = cm[dst[offset + 5 + y *
stride] + ((d * 3) >> 4)];
285 dst[offset + 4 + y *
stride] = cm[dst[offset + 4 + y *
stride] + ((d * 1) >> 4)];
286 }
287 if (right_damage) {
288 dst[offset + 8 + y *
stride] = cm[dst[offset + 8 + y *
stride] - ((d * 7) >> 4)];
289 dst[offset + 9 + y *
stride] = cm[dst[offset + 9 + y *
stride] - ((d * 5) >> 4)];
290 dst[offset + 10+ y *
stride] = cm[dst[offset + 10 + y *
stride] - ((d * 3) >> 4)];
291 dst[offset + 11+ y *
stride] = cm[dst[offset + 11 + y *
stride] - ((d * 1) >> 4)];
292 }
293 }
294 }
295 }
296 }
297
298 /**
299 * simple vertical deblocking filter used for error resilience
300 * @param w width in 8 pixel blocks
301 * @param h height in 8 pixel blocks
302 */
305 {
306 int b_x, b_y, mvx_stride, mvy_stride;
309 mvx_stride >>= is_luma;
310 mvy_stride *= mvx_stride;
311
312 for (b_y = 0; b_y < h - 1; b_y++) {
313 for (b_x = 0; b_x < w; b_x++) {
314 int x;
321 int offset = b_x * 8 + b_y * stride * 8;
322
323 int16_t *top_mv = s->
cur_pic->
motion_val[0][mvy_stride * b_y + mvx_stride * b_x];
324 int16_t *bottom_mv = s->
cur_pic->
motion_val[0][mvy_stride * (b_y + 1) + mvx_stride * b_x];
325
326 if (!(top_damage || bottom_damage))
327 continue; // both undamaged
328
329 if ((!top_intra) && (!bottom_intra) &&
330 FFABS(top_mv[0] - bottom_mv[0]) +
331 FFABS(top_mv[1] + bottom_mv[1]) < 2)
332 continue;
333
334 for (x = 0; x < 8; x++) {
336
337 a = dst[offset + x + 7 *
stride] - dst[offset + x + 6 *
stride];
338 b = dst[offset + x + 8 *
stride] - dst[offset + x + 7 *
stride];
339 c = dst[offset + x + 9 *
stride] - dst[offset + x + 8 *
stride];
340
343 if (b < 0)
344 d = -d;
345
346 if (d == 0)
347 continue;
348
349 if (!(top_damage && bottom_damage))
350 d = d * 16 / 9;
351
352 if (top_damage) {
353 dst[offset + x + 7 *
stride] = cm[dst[offset + x + 7 *
stride] + ((d * 7) >> 4)];
354 dst[offset + x + 6 *
stride] = cm[dst[offset + x + 6 *
stride] + ((d * 5) >> 4)];
355 dst[offset + x + 5 *
stride] = cm[dst[offset + x + 5 *
stride] + ((d * 3) >> 4)];
356 dst[offset + x + 4 *
stride] = cm[dst[offset + x + 4 *
stride] + ((d * 1) >> 4)];
357 }
358 if (bottom_damage) {
359 dst[offset + x + 8 *
stride] = cm[dst[offset + x + 8 *
stride] - ((d * 7) >> 4)];
360 dst[offset + x + 9 *
stride] = cm[dst[offset + x + 9 *
stride] - ((d * 5) >> 4)];
361 dst[offset + x + 10 *
stride] = cm[dst[offset + x + 10 *
stride] - ((d * 3) >> 4)];
362 dst[offset + x + 11 *
stride] = cm[dst[offset + x + 11 *
stride] - ((d * 1) >> 4)];
363 }
364 }
365 }
366 }
367 }
368
370 {
372 #define MV_FROZEN 3
373 #define MV_CHANGED 2
374 #define MV_UNCHANGED 1
378 int i,
depth, num_avail;
379 int mb_x, mb_y, mot_step, mot_stride;
380
382
383 num_avail = 0;
384 for (i = 0; i < s->
mb_num; i++) {
386 int f = 0;
388
392 f =
MV_FROZEN;
// inter with undamaged MV
393
394 fixed[mb_xy] = f;
396 num_avail++;
400 const int mot_index= (mb_x + mb_y*mot_stride) * mot_step;
404 }
405 }
406
408 num_avail <= mb_width / 2) {
409 for (mb_y = 0; mb_y < s->
mb_height; mb_y++) {
410 for (mb_x = 0; mb_x < s->
mb_width; mb_x++) {
411 const int mb_xy = mb_x + mb_y * s->
mb_stride;
413
415 continue;
417 continue;
418
422 mb_x, mb_y, 0, 0);
423 }
424 }
425 return;
426 }
427
428 for (depth = 0; ; depth++) {
429 int changed,
pass, none_left;
430
431 none_left = 1;
432 changed = 1;
433 for (pass = 0; (changed || pass < 2) && pass < 10; pass++) {
434 int mb_x, mb_y;
435 int score_sum = 0;
436
437 changed = 0;
438 for (mb_y = 0; mb_y < s->
mb_height; mb_y++) {
439 for (mb_x = 0; mb_x < s->
mb_width; mb_x++) {
440 const int mb_xy = mb_x + mb_y * s->
mb_stride;
441 int mv_predictor[8][2] = { { 0 } };
442 int ref[8] = { 0 };
443 int pred_count = 0;
444 int j;
445 int best_score = 256 * 256 * 256 * 64;
446 int best_pred = 0;
447 const int mot_index = (mb_x + mb_y * mot_stride) * mot_step;
448 int prev_x, prev_y, prev_ref;
449
450 if ((mb_x ^ mb_y ^ pass) & 1)
451 continue;
452
454 continue;
457
458 j = 0;
459 if (mb_x > 0 && fixed[mb_xy - 1] ==
MV_FROZEN)
460 j = 1;
461 if (mb_x + 1 < mb_width && fixed[mb_xy + 1] ==
MV_FROZEN)
462 j = 1;
463 if (mb_y > 0 && fixed[mb_xy - mb_stride] ==
MV_FROZEN)
464 j = 1;
465 if (mb_y + 1 < mb_height && fixed[mb_xy + mb_stride] ==
MV_FROZEN)
466 j = 1;
467 if (j == 0)
468 continue;
469
470 j = 0;
471 if (mb_x > 0 && fixed[mb_xy - 1 ] ==
MV_CHANGED)
472 j = 1;
473 if (mb_x + 1 < mb_width && fixed[mb_xy + 1 ] ==
MV_CHANGED)
474 j = 1;
475 if (mb_y > 0 && fixed[mb_xy - mb_stride] ==
MV_CHANGED)
476 j = 1;
477 if (mb_y + 1 < mb_height && fixed[mb_xy + mb_stride] ==
MV_CHANGED)
478 j = 1;
479 if (j == 0 && pass > 1)
480 continue;
481
482 none_left = 0;
483
484 if (mb_x > 0 && fixed[mb_xy - 1]) {
485 mv_predictor[pred_count][0] =
487 mv_predictor[pred_count][1] =
489 ref[pred_count] =
491 pred_count++;
492 }
493 if (mb_x + 1 < mb_width && fixed[mb_xy + 1]) {
494 mv_predictor[pred_count][0] =
496 mv_predictor[pred_count][1] =
498 ref[pred_count] =
500 pred_count++;
501 }
502 if (mb_y > 0 && fixed[mb_xy - mb_stride]) {
503 mv_predictor[pred_count][0] =
505 mv_predictor[pred_count][1] =
507 ref[pred_count] =
509 pred_count++;
510 }
511 if (mb_y + 1<mb_height && fixed[mb_xy + mb_stride]) {
512 mv_predictor[pred_count][0] =
514 mv_predictor[pred_count][1] =
516 ref[pred_count] =
518 pred_count++;
519 }
520 if (pred_count == 0)
521 continue;
522
523 if (pred_count > 1) {
524 int sum_x = 0, sum_y = 0, sum_r = 0;
525 int max_x, max_y, min_x, min_y, max_r, min_r;
526
527 for (j = 0; j < pred_count; j++) {
528 sum_x += mv_predictor[j][0];
529 sum_y += mv_predictor[j][1];
530 sum_r += ref[j];
531 if (j && ref[j] != ref[j - 1])
532 goto skip_mean_and_median;
533 }
534
535 /* mean */
536 mv_predictor[pred_count][0] = sum_x / j;
537 mv_predictor[pred_count][1] = sum_y / j;
538 ref[pred_count] = sum_r / j;
539
540 /* median */
541 if (pred_count >= 3) {
542 min_y = min_x = min_r = 99999;
543 max_y = max_x = max_r = -99999;
544 } else {
545 min_x = min_y = max_x = max_y = min_r = max_r = 0;
546 }
547 for (j = 0; j < pred_count; j++) {
548 max_x =
FFMAX(max_x, mv_predictor[j][0]);
549 max_y =
FFMAX(max_y, mv_predictor[j][1]);
550 max_r =
FFMAX(max_r, ref[j]);
551 min_x =
FFMIN(min_x, mv_predictor[j][0]);
552 min_y =
FFMIN(min_y, mv_predictor[j][1]);
553 min_r =
FFMIN(min_r, ref[j]);
554 }
555 mv_predictor[pred_count + 1][0] = sum_x - max_x - min_x;
556 mv_predictor[pred_count + 1][1] = sum_y - max_y - min_y;
557 ref[pred_count + 1] = sum_r - max_r - min_r;
558
559 if (pred_count == 4) {
560 mv_predictor[pred_count + 1][0] /= 2;
561 mv_predictor[pred_count + 1][1] /= 2;
562 ref[pred_count + 1] /= 2;
563 }
564 pred_count += 2;
565 }
566
567 skip_mean_and_median:
568 /* zero MV */
569 pred_count++;
570
571 if (!fixed[mb_xy] && 0) {
573 // FIXME
574 } else {
576 mb_y, 0);
577 }
580 goto skip_last_mv;
584 } else {
588 }
589
590 /* last MV */
591 mv_predictor[pred_count][0] = prev_x;
592 mv_predictor[pred_count][1] = prev_y;
593 ref[pred_count] = prev_ref;
594 pred_count++;
595
596 skip_last_mv:
597
598 for (j = 0; j < pred_count; j++) {
600 int score = 0;
602 mb_x * 16 + mb_y * 16 * linesize[0];
603
605 s->
mv[0][0][0] = mv_predictor[j][0];
607 s->
mv[0][0][1] = mv_predictor[j][1];
608
609 // predictor intra or otherwise not available
610 if (ref[j] < 0)
611 continue;
612
615
616 if (mb_x > 0 && fixed[mb_xy - 1]) {
617 int k;
618 for (k = 0; k < 16; k++)
619 score +=
FFABS(src[k * linesize[0] - 1] -
620 src[k * linesize[0]]);
621 }
622 if (mb_x + 1 < mb_width && fixed[mb_xy + 1]) {
623 int k;
624 for (k = 0; k < 16; k++)
625 score +=
FFABS(src[k * linesize[0] + 15] -
626 src[k * linesize[0] + 16]);
627 }
628 if (mb_y > 0 && fixed[mb_xy - mb_stride]) {
629 int k;
630 for (k = 0; k < 16; k++)
631 score +=
FFABS(src[k - linesize[0]] - src[k]);
632 }
633 if (mb_y + 1 < mb_height && fixed[mb_xy + mb_stride]) {
634 int k;
635 for (k = 0; k < 16; k++)
636 score +=
FFABS(src[k + linesize[0] * 15] -
637 src[k + linesize[0] * 16]);
638 }
639
640 if (score <= best_score) { // <= will favor the last MV
641 best_score = score;
642 best_pred = j;
643 }
644 }
645 score_sum += best_score;
646 s->
mv[0][0][0] = mv_predictor[best_pred][0];
647 s->
mv[0][0][1] = mv_predictor[best_pred][1];
648
649 for (i = 0; i < mot_step; i++)
650 for (j = 0; j < mot_step; j++) {
653 }
654
657
658
659 if (s->
mv[0][0][0] != prev_x || s->
mv[0][0][1] != prev_y) {
661 changed++;
662 } else
664 }
665 }
666 }
667
668 if (none_left)
669 return;
670
671 for (i = 0; i < s->
mb_num; i++) {
673 if (fixed[mb_xy])
675 }
676 }
677 }
678
680 {
681 int is_intra_likely, i, j, undamaged_count, skip_amount, mb_x, mb_y;
682
684 return 1; // no previous frame available -> use spatial prediction
685
686 undamaged_count = 0;
687 for (i = 0; i < s->
mb_num; i++) {
691 undamaged_count++;
692 }
693
695 return 1;
696
697 if (undamaged_count < 5)
698 return 0; // almost all MBs damaged -> use temporal prediction
699
700 // prevent dsp.sad() check, that requires access to the image
701 if (CONFIG_MPEG_XVMC_DECODER &&
704 return 1;
705
706 skip_amount =
FFMAX(undamaged_count / 50, 1);
// check only up to 50 MBs
707 is_intra_likely = 0;
708
709 j = 0;
710 for (mb_y = 0; mb_y < s->
mb_height - 1; mb_y++) {
711 for (mb_x = 0; mb_x < s->
mb_width; mb_x++) {
712 int error;
713 const int mb_xy = mb_x + mb_y * s->
mb_stride;
714
717 continue; // skip damaged
718
719 j++;
720 // skip a few to speed things up
721 if ((j % skip_amount) != 0)
722 continue;
723
727 mb_x * 16 + mb_y * 16 * linesize[0];
729 mb_x * 16 + mb_y * 16 * linesize[0];
730
732 // FIXME
733 } else {
735 }
736 is_intra_likely += s->
dsp->
sad[0](NULL, last_mb_ptr, mb_ptr,
737 linesize[0], 16);
738 // FIXME need await_progress() here
739 is_intra_likely -= s->
dsp->
sad[0](NULL, last_mb_ptr,
740 last_mb_ptr + linesize[0] * 16,
741 linesize[0], 16);
742 } else {
744 is_intra_likely++;
745 else
746 is_intra_likely--;
747 }
748 }
749 }
750 // printf("is_intra_likely: %d type:%d\n", is_intra_likely, s->pict_type);
751 return is_intra_likely > 0;
752 }
753
755 {
757 return;
758
763 }
764
765 /**
766 * Add a slice.
767 * @param endx x component of the last macroblock, can be -1
768 * for the last of the previous line
769 * @param status the status at the end (ER_MV_END, ER_AC_ERROR, ...), it is
770 * assumed that no earlier end or error of the same type occurred
771 */
773 int endx, int endy, int status)
774 {
775 const int start_i = av_clip(startx + starty * s->
mb_width, 0, s->
mb_num - 1);
776 const int end_i = av_clip(endx + endy * s->
mb_width, 0, s->
mb_num);
780
782 return;
783
784 if (start_i > end_i || start_xy > end_xy) {
786 "internal error, slice end before start\n");
787 return;
788 }
789
791 return;
792
797 }
801 }
805 }
806
810 }
811
812 if (mask == ~0x7F) {
814 (end_xy - start_xy) *
sizeof(
uint8_t));
815 } else {
816 int i;
817 for (i = start_xy; i < end_xy; i++)
819 }
820
823 else {
826 }
827
829
833
838 }
839 }
840 }
841
843 {
845 int i, mb_x, mb_y, error, error_type, dc_error, mv_error, ac_error;
847 int threshold_part[4] = { 100, 100, 100 };
848 int threshold = 50;
849 int is_intra_likely;
851
852 /* We do not support ER of field pictures yet,
853 * though it should not crash if enabled. */
861 return;
862 }
869 }
870 }
877 }
878 }
879
882
883 for (i = 0; i < 2; i++) {
887 break;
890 }
891 if (i < 2) {
892 for (i = 0; i < 2; i++) {
897 }
898 return;
899 }
900 }
901
903 for (mb_y = 0; mb_y < s->
mb_height; mb_y++) {
904 for (mb_x = 0; mb_x < s->
mb_width; mb_x++) {
906
908 }
910 }
911 }
912
913 #if 1
914 /* handle overlapping slices */
915 for (error_type = 1; error_type <= 3; error_type++) {
916 int end_ok = 0;
917
918 for (i = s->
mb_num - 1; i >= 0; i--) {
921
922 if (error & (1 << error_type))
923 end_ok = 1;
924 if (error & (8 << error_type))
925 end_ok = 1;
926
927 if (!end_ok)
929
931 end_ok = 0;
932 }
933 }
934 #endif
935 #if 1
936 /* handle slices with partitions of different length */
938 int end_ok = 0;
939
940 for (i = s->
mb_num - 1; i >= 0; i--) {
943
945 end_ok = 0;
949 end_ok = 1;
950
951 if (!end_ok)
953
955 end_ok = 0;
956 }
957 }
958 #endif
959 /* handle missing slices */
961 int end_ok = 1;
962
963 // FIXME + 100 hack
968
970 end_ok = 1;
971
976 // end & uninit
977 end_ok = 0;
978 }
979
980 if (!end_ok)
982 }
983 }
984
985 #if 1
986 /* backward mark errors */
987 distance = 9999999;
988 for (error_type = 1; error_type <= 3; error_type++) {
989 for (i = s->
mb_num - 1; i >= 0; i--) {
992
993 if (!s->
mbskip_table[mb_xy])
// FIXME partition specific
994 distance++;
995 if (error & (1 << error_type))
996 distance = 0;
997
999 if (distance < threshold_part[error_type - 1])
1001 } else {
1002 if (distance < threshold)
1004 }
1005
1007 distance = 9999999;
1008 }
1009 }
1010 #endif
1011
1012 /* forward mark errors */
1013 error = 0;
1014 for (i = 0; i < s->
mb_num; i++) {
1017
1020 } else {
1023 }
1024 }
1025 #if 1
1026 /* handle not partitioned case */
1028 for (i = 0; i < s->
mb_num; i++) {
1034 }
1035 }
1036 #endif
1037
1038 dc_error = ac_error = mv_error = 0;
1039 for (i = 0; i < s->
mb_num; i++) {
1043 dc_error++;
1045 ac_error++;
1047 mv_error++;
1048 }
1051
1053
1054 /* set unknown mb-type to most likely */
1055 for (i = 0; i < s->
mb_num; i++) {
1059 continue;
1060
1061 if (is_intra_likely)
1063 else
1065 }
1066
1067 // change inter to intra blocks if no reference frames are available
1070 for (i = 0; i < s->
mb_num; i++) {
1074 }
1075
1076 /* handle inter blocks with damaged AC */
1077 for (mb_y = 0; mb_y < s->
mb_height; mb_y++) {
1078 for (mb_x = 0; mb_x < s->
mb_width; mb_x++) {
1079 const int mb_xy = mb_x + mb_y * s->
mb_stride;
1083 int mv_type;
1084
1086
1088 continue; // intra
1090 continue; // inter with damaged MV
1092 continue; // undamaged inter
1093
1095 int mb_index = mb_x * 2 + mb_y * 2 * s->
b8_stride;
1096 int j;
1098 for (j = 0; j < 4; j++) {
1101 }
1102 } else {
1106 }
1107
1108 s->
decode_mb(s->
opaque, 0
/* FIXME h264 partitioned slices need this set */,
1109 mv_dir, mv_type, &s->
mv, mb_x, mb_y, 0, 0);
1110 }
1111 }
1112
1113 /* guess MVs */
1115 for (mb_y = 0; mb_y < s->
mb_height; mb_y++) {
1116 for (mb_x = 0; mb_x < s->
mb_width; mb_x++) {
1117 int xy = mb_x * 2 + mb_y * 2 * s->
b8_stride;
1118 const int mb_xy = mb_x + mb_y * s->
mb_stride;
1121
1123
1125 continue;
1127 continue; // inter with undamaged MV
1129 continue; // undamaged inter
1130
1135
1139
1142
1147 } else {
1152 }
1153
1155 mb_x, mb_y, 0, 0);
1156 }
1157 }
1158 } else
1160
1161 /* the filters below are not XvMC compatible, skip them */
1163 goto ec_clean;
1164 /* fill DC for inter blocks */
1165 for (mb_y = 0; mb_y < s->
mb_height; mb_y++) {
1166 for (mb_x = 0; mb_x < s->
mb_width; mb_x++) {
1167 int dc, dcu, dcv,
y,
n;
1168 int16_t *dc_ptr;
1169 uint8_t *dest_y, *dest_cb, *dest_cr;
1170 const int mb_xy = mb_x + mb_y * s->
mb_stride;
1172
1174
1176 continue;
1177 // if (error & ER_MV_ERROR)
1178 // continue; // inter data damaged FIXME is this good?
1179
1180 dest_y = s->
cur_pic->
f.
data[0] + mb_x * 16 + mb_y * 16 * linesize[0];
1181 dest_cb = s->
cur_pic->
f.
data[1] + mb_x * 8 + mb_y * 8 * linesize[1];
1182 dest_cr = s->
cur_pic->
f.
data[2] + mb_x * 8 + mb_y * 8 * linesize[2];
1183
1185 for (n = 0; n < 4; n++) {
1186 dc = 0;
1187 for (y = 0; y < 8; y++) {
1188 int x;
1189 for (x = 0; x < 8; x++)
1190 dc += dest_y[x + (n & 1) * 8 +
1191 (y + (n >> 1) * 8) * linesize[0]];
1192 }
1193 dc_ptr[(n & 1) + (n >> 1) * s->
b8_stride] = (dc + 4) >> 3;
1194 }
1195
1196 dcu = dcv = 0;
1197 for (y = 0; y < 8; y++) {
1198 int x;
1199 for (x = 0; x < 8; x++) {
1200 dcu += dest_cb[x + y * linesize[1]];
1201 dcv += dest_cr[x + y * linesize[2]];
1202 }
1203 }
1206 }
1207 }
1208 #if 1
1209 /* guess DC for damaged blocks */
1213 #endif
1214
1215 /* filter luma DC */
1217
1218 #if 1
1219 /* render DC only intra */
1220 for (mb_y = 0; mb_y < s->
mb_height; mb_y++) {
1221 for (mb_x = 0; mb_x < s->
mb_width; mb_x++) {
1222 uint8_t *dest_y, *dest_cb, *dest_cr;
1223 const int mb_xy = mb_x + mb_y * s->
mb_stride;
1225
1227
1229 continue;
1231 continue; // undamaged
1232
1233 dest_y = s->
cur_pic->
f.
data[0] + mb_x * 16 + mb_y * 16 * linesize[0];
1234 dest_cb = s->
cur_pic->
f.
data[1] + mb_x * 8 + mb_y * 8 * linesize[1];
1235 dest_cr = s->
cur_pic->
f.
data[2] + mb_x * 8 + mb_y * 8 * linesize[2];
1236
1237 put_dc(s, dest_y, dest_cb, dest_cr, mb_x, mb_y);
1238 }
1239 }
1240 #endif
1241
1243 /* filter horizontal block boundaries */
1250
1251 /* filter vertical block boundaries */
1258 }
1259
1260 ec_clean:
1261 /* clean a few tables */
1262 for (i = 0; i < s->
mb_num; i++) {
1265
1269 }
1271 }
1275 }