1 /*
2 * Copyright (c) 2001-2003 The ffmpeg Project
3 *
4 * first version by Francois Revol (revol@free.fr)
5 * fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
6 * by Mike Melanson (melanson@pcisys.net)
7 * CD-ROM XA ADPCM codec by BERO
8 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
9 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
10 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
11 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
12 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
13 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
14 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
15 *
16 * This file is part of FFmpeg.
17 *
18 * FFmpeg is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU Lesser General Public
20 * License as published by the Free Software Foundation; either
21 * version 2.1 of the License, or (at your option) any later version.
22 *
23 * FFmpeg is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
26 * Lesser General Public License for more details.
27 *
28 * You should have received a copy of the GNU Lesser General Public
29 * License along with FFmpeg; if not, write to the Free Software
30 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
31 */
38
39 /**
40 * @file
41 * ADPCM decoders
42 * Features and limitations:
43 *
44 * Reference documents:
45 * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
46 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
47 * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
48 * http://openquicktime.sourceforge.net/
49 * XAnim sources (xa_codec.c) http://xanim.polter.net/
50 * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
51 * SoX source code http://sox.sourceforge.net/
52 *
53 * CD-ROM XA:
54 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
55 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
56 * readstr http://www.geocities.co.jp/Playtown/2004/
57 */
58
59 /* These are for CD-ROM XA ADPCM */
61 { 0, 0 },
62 { 60, 0 },
63 { 115, -52 },
64 { 98, -55 },
65 { 122, -60 }
66 };
67
69 0, 240, 460, 392,
70 0, 0, -208, -220,
71 0, 1, 3, 4,
72 7, 8, 10, 11,
73 0, -1, -3, -4
74 };
75
76 // padded to zero where table size is less then 16
78 /*2*/ { -1, 2 },
79 /*3*/ { -1, -1, 2, 4 },
80 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
81 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
82 };
83
84 /* end of tables */
85
90
92 {
94 unsigned int min_channels = 1;
95 unsigned int max_channels = 2;
96
100 min_channels = 2;
101 break;
108 max_channels = 6;
109 break;
110 }
114 }
115
119 break;
123 break;
128 }
129 break;
133 break;
134 default:
135 break;
136 }
137
151 break;
155 break;
156 default:
158 }
159
160 return 0;
161 }
162
164 {
165 int step_index;
168
171 step_index = av_clip(step_index, 0, 88);
172
173 sign = nibble & 8;
174 delta = nibble & 7;
175 /* perform direct multiplication instead of series of jumps proposed by
176 * the reference ADPCM implementation since modern CPUs can do the mults
177 * quickly enough */
178 diff = ((2 * delta + 1) * step) >>
shift;
180 if (sign) predictor -=
diff;
181 else predictor +=
diff;
182
185
187 }
188
190 {
192
193 shift = bps - 1;
197 step_index = av_clip(step_index, 0, 88);
198
199 sign = nibble & (1 <<
shift);
200 delta = nibble & ((1 <<
shift) - 1);
201 diff = ((2 * delta + 1) * step) >>
shift;
203 if (sign) predictor -=
diff;
204 else predictor +=
diff;
205
208
210 }
211
213 {
214 int step_index;
217
220 step_index = av_clip(step_index, 0, 88);
221
222 diff = step >> 3;
223 if (nibble & 4) diff += step;
224 if (nibble & 2) diff += step >> 1;
225 if (nibble & 1) diff += step >> 2;
226
227 if (nibble & 8)
229 else
231
234
236 }
237
239 {
241
243 predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->
idelta;
244
246 c->
sample1 = av_clip_int16(predictor);
249
251 }
252
254 {
256
259 step_index = av_clip(step_index, 0, 48);
260
261 sign = nibble & 8;
262 delta = nibble & 7;
263 diff = ((2 * delta + 1) * step) >> 3;
265 if (sign) predictor -=
diff;
266 else predictor +=
diff;
267
268 c->
predictor = av_clip(predictor, -2048, 2047);
270
272 }
273
275 {
277 int new_step;
278
279 sign = nibble & 8;
280 delta = nibble & 7;
281 /* perform direct multiplication instead of series of jumps proposed by
282 * the reference ADPCM implementation since modern CPUs can do the mults
283 * quickly enough */
284 diff = ((2 * delta + 1) * c->
step) >> 3;
285 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
288 /* calculate new step and clamp it to range 511..32767 */
290 c->
step = av_clip(new_step, 511, 32767);
291
293 }
294
296 {
298
299 sign = nibble & (1<<(size-1));
300 delta = nibble & ((1<<(size-1))-1);
302
303 /* clamp result */
305
306 /* calculate new step */
307 if (delta >= (2*size - 3) && c->
step < 3)
309 else if (delta == 0 && c->
step > 0)
311
313 }
314
316 {
320 }
321
325 c->
step = av_clip(c->
step, 127, 24567);
327 }
328
332 {
333 int i, j;
335 int s_1,s_2;
337
338 out0 += sample_offset;
339 if (channels == 1)
340 out1 = out0 + 28;
341 else
342 out1 += sample_offset;
343
344 for(i=0;i<4;i++) {
345 shift = 12 - (in[4+i*2] & 15);
346 filter = in[4+i*2] >> 4;
349 filter=0;
350 }
353
356
357 for(j=0;j<28;j++) {
358 d = in[16+i+j*4];
359
361 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
362 s_2 = s_1;
363 s_1 = av_clip_int16(s);
364 out0[j] = s_1;
365 }
366
367 if (channels == 2) {
372 }
373
374 shift = 12 - (in[5+i*2] & 15);
375 filter = in[5+i*2] >> 4;
378 filter=0;
379 }
380
383
384 for(j=0;j<28;j++) {
385 d = in[16+i+j*4];
386
388 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
389 s_2 = s_1;
390 s_1 = av_clip_int16(s);
391 out1[j] = s_1;
392 }
393
394 if (channels == 2) {
397 } else {
400 }
401
402 out0 += 28 * (3 - channels);
403 out1 += 28 * (3 - channels);
404 }
405
406 return 0;
407 }
408
410 {
414 int k0, signmask, nb_bits,
count;
415 int size = buf_size*8;
416 int i;
417
419
420 //read bits & initial values
423 k0 = 1 << (nb_bits-2);
424 signmask = 1 << (nb_bits-1);
425
427 for (i = 0; i < avctx->
channels; i++) {
430 }
431
433 int i;
434
435 for (i = 0; i < avctx->
channels; i++) {
436 // similar to IMA adpcm
439 long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
440 int k = k0;
441
442 do {
443 if (delta & k)
444 vpdiff += step;
445 step >>= 1;
446 k >>= 1;
447 } while(k);
448 vpdiff += step;
449
450 if (delta & signmask)
452 else
454
456
459
461 }
462 }
463 }
464 }
465
466 /**
467 * Get the number of samples that will be decoded from the packet.
468 * In one case, this is actually the maximum number of samples possible to
469 * decode with the given buf_size.
470 *
471 * @param[out] coded_samples set to the number of samples as coded in the
472 * packet, or 0 if the codec does not encode the
473 * number of samples in each frame.
474 */
476 int buf_size, int *coded_samples)
477 {
479 int nb_samples = 0;
481 int has_coded_samples = 0;
482 int header_size;
483
484 *coded_samples = 0;
485
486 if(ch <= 0)
487 return 0;
488
490 /* constant, only check buf_size */
492 if (buf_size < 76 * ch)
493 return 0;
494 nb_samples = 128;
495 break;
497 if (buf_size < 34 * ch)
498 return 0;
499 nb_samples = 64;
500 break;
501 /* simple 4-bit adpcm */
508 nb_samples = buf_size * 2 / ch;
509 break;
510 }
511 if (nb_samples)
512 return nb_samples;
513
514 /* simple 4-bit adpcm, with header */
515 header_size = 0;
521 }
522 if (header_size > 0)
523 return (buf_size - header_size) * 2 / ch;
524
525 /* more complex formats */
528 has_coded_samples = 1;
529 *coded_samples = bytestream2_get_le32(gb);
530 *coded_samples -= *coded_samples % 28;
531 nb_samples = (buf_size - 12) / 30 * 28;
532 break;
534 has_coded_samples = 1;
535 *coded_samples = bytestream2_get_le32(gb);
536 nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
537 break;
539 nb_samples = (buf_size - ch) / ch * 2;
540 break;
544 /* maximum number of samples */
545 /* has internal offsets and a per-frame switch to signal raw 16-bit */
546 has_coded_samples = 1;
549 header_size = 4 + 9 * ch;
550 *coded_samples = bytestream2_get_le32(gb);
551 break;
553 header_size = 4 + 5 * ch;
554 *coded_samples = bytestream2_get_le32(gb);
555 break;
557 header_size = 4 + 5 * ch;
558 *coded_samples = bytestream2_get_be32(gb);
559 break;
560 }
561 *coded_samples -= *coded_samples % 28;
562 nb_samples = (buf_size - header_size) * 2 / ch;
563 nb_samples -= nb_samples % 28;
564 break;
568 nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch;
569 break;
573 nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
574 break;
578 nb_samples = (buf_size - 4 * ch) * 2 / ch;
579 break;
581 {
586 nb_samples = 1 + (buf_size - 4 * ch) / (bsize * ch) * bsamples;
587 break;
588 }
592 nb_samples = 2 + (buf_size - 7 * ch) * 2 / ch;
593 break;
597 {
598 int samples_per_byte;
603 }
605 nb_samples++;
606 buf_size -= ch;
607 }
608 nb_samples += buf_size * samples_per_byte / ch;
609 break;
610 }
612 {
613 int buf_bits = buf_size * 8 - 2;
614 int nbits = (bytestream2_get_byte(gb) >> 6) + 2;
615 int block_hdr_size = 22 * ch;
616 int block_size = block_hdr_size + nbits * ch * 4095;
617 int nblocks = buf_bits / block_size;
618 int bits_left = buf_bits - nblocks * block_size;
619 nb_samples = nblocks * 4096;
620 if (bits_left >= block_hdr_size)
621 nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
622 break;
623 }
626 nb_samples = buf_size / (8 * ch) * 14;
627 break;
628 }
629 has_coded_samples = 1;
631 *coded_samples = bytestream2_get_be32(gb);
632 *coded_samples -= *coded_samples % 14;
633 nb_samples = (buf_size - (8 + 36 * ch)) / (8 * ch) * 14;
634 break;
636 nb_samples = buf_size / (9 * ch) * 16;
637 break;
639 nb_samples = (buf_size / 128) * 224 / ch;
640 break;
642 nb_samples = buf_size / (16 * ch) * 28;
643 break;
644 }
645
646 /* validate coded sample count */
647 if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
649
650 return nb_samples;
651 }
652
654 int *got_frame_ptr,
AVPacket *avpkt)
655 {
658 int buf_size = avpkt->
size;
661 int n,
m, channel, i;
662 short *samples;
663 int16_t **samples_p;
664 int st; /* stereo */
665 int count1, count2;
666 int nb_samples, coded_samples,
ret;
668
670 nb_samples =
get_nb_samples(avctx, &gb, buf_size, &coded_samples);
671 if (nb_samples <= 0) {
674 }
675
676 /* get output buffer */
680 samples = (
short *)frame->
data[0];
682
683 /* use coded_samples when applicable */
684 /* it is always <= nb_samples, so the output buffer will be large enough */
685 if (coded_samples) {
686 if (coded_samples != nb_samples)
688 frame->
nb_samples = nb_samples = coded_samples;
689 }
690
692
695 /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
696 Channel data is interleaved per-chunk. */
697 for (channel = 0; channel < avctx->
channels; channel++) {
699 int step_index;
700 cs = &(c->
status[channel]);
701 /* (pppppp) (piiiiiii) */
702
703 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
704 predictor =
sign_extend(bytestream2_get_be16u(&gb), 16);
705 step_index = predictor & 0x7F;
706 predictor &= ~0x7F;
707
710 if (diff < 0)
712 if (diff > 0x7f)
713 goto update;
714 } else {
715 update:
718 }
719
724 }
725
726 samples = samples_p[channel];
727
728 for (m = 0; m < 64; m += 2) {
729 int byte = bytestream2_get_byteu(&gb);
732 }
733 }
734 break;
739
745 }
746 }
747
751
753 for (n = 0; n < (nb_samples - 1) / samples_per_block; n++) {
754 for (i = 0; i < avctx->
channels; i++) {
756 samples = &samples_p[i][1 + n * samples_per_block];
757 for (m = 0; m < samples_per_block; m++) {
760 }
761 }
762 }
764 } else {
765 for (n = 0; n < (nb_samples - 1) / 8; n++) {
766 for (i = 0; i < avctx->
channels; i++) {
768 samples = &samples_p[i][1 + n * 8];
769 for (m = 0; m < 8; m += 2) {
770 int v = bytestream2_get_byteu(&gb);
773 }
774 }
775 }
776 }
777 break;
779 for (i = 0; i < avctx->
channels; i++)
781
782 for (i = 0; i < avctx->
channels; i++) {
788 }
789 }
790
791 for (i = 0; i < avctx->
channels; i++) {
792 samples = (int16_t *)frame->
data[i];
794 for (n = nb_samples >> 1; n > 0; n--) {
795 int v = bytestream2_get_byteu(&gb);
798 }
799 }
800 break;
802 {
803 int block_predictor;
804
805 block_predictor = bytestream2_get_byteu(&gb);
806 if (block_predictor > 6) {
808 block_predictor);
810 }
813 if (st) {
814 block_predictor = bytestream2_get_byteu(&gb);
815 if (block_predictor > 6) {
817 block_predictor);
819 }
822 }
824 if (st){
826 }
827
832
837 for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) {
838 int byte = bytestream2_get_byteu(&gb);
841 }
842 break;
843 }
845 for (channel = 0; channel < avctx->
channels; channel++) {
853 }
854 }
855 for (n = (nb_samples - 1) >> (1 - st); n > 0; n--) {
856 int v = bytestream2_get_byteu(&gb);
859 }
860 break;
862 {
863 int last_byte = 0;
864 int nibble;
865 int decode_top_nibble_next = 0;
866 int diff_channel;
867 const int16_t *samples_end = samples + avctx->
channels * nb_samples;
868
878 }
879 /* sign extend the predictors */
881
882 /* DK3 ADPCM support macro */
883 #define DK3_GET_NEXT_NIBBLE() \
884 if (decode_top_nibble_next) { \
885 nibble = last_byte >> 4; \
886 decode_top_nibble_next = 0; \
887 } else { \
888 last_byte = bytestream2_get_byteu(&gb); \
889 nibble = last_byte & 0x0F; \
890 decode_top_nibble_next = 1; \
891 }
892
893 while (samples < samples_end) {
894
895 /* for this algorithm, c->status[0] is the sum channel and
896 * c->status[1] is the diff channel */
897
898 /* process the first predictor of the sum channel */
901
902 /* process the diff channel predictor */
905
906 /* process the first pair of stereo PCM samples */
910
911 /* process the second predictor of the sum channel */
914
915 /* process the second pair of stereo PCM samples */
919 }
920 break;
921 }
923 for (channel = 0; channel < avctx->
channels; channel++) {
931 }
932 }
933
934 for (n = nb_samples >> (1 - st); n > 0; n--) {
935 int v1, v2;
936 int v = bytestream2_get_byteu(&gb);
937 /* nibbles are swapped for mono */
938 if (st) {
939 v1 = v >> 4;
940 v2 = v & 0x0F;
941 } else {
942 v2 = v >> 4;
943 v1 = v & 0x0F;
944 }
947 }
948 break;
951 int v = bytestream2_get_byteu(&gb);
954 }
955 break;
958 int v = bytestream2_get_byteu(&gb);
961 }
962 break;
964 for (channel = 0; channel < avctx->
channels; channel++) {
972 }
973 }
974 for (n = 0; n < nb_samples / 2; n++) {
976
977 byte[0] = bytestream2_get_byteu(&gb);
978 if (st)
979 byte[1] = bytestream2_get_byteu(&gb);
980 for(channel = 0; channel < avctx->
channels; channel++) {
982 }
983 for(channel = 0; channel < avctx->
channels; channel++) {
985 }
986 }
987 break;
990 for (channel = 0; channel < avctx->
channels; channel++) {
991 int16_t *smp = samples_p[channel];
992
993 for (n = nb_samples / 2; n > 0; n--) {
994 int v = bytestream2_get_byteu(&gb);
997 }
998 }
999 } else {
1000 for (n = nb_samples / 2; n > 0; n--) {
1001 for (channel = 0; channel < avctx->
channels; channel++) {
1002 int v = bytestream2_get_byteu(&gb);
1005 }
1007 }
1008 }
1010 break;
1012 {
1013 int16_t *out0 = samples_p[0];
1014 int16_t *out1 = samples_p[1];
1015 int samples_per_block = 28 * (3 - avctx->
channels) * 4;
1016 int sample_offset = 0;
1020 avctx->
channels, sample_offset)) < 0)
1021 return ret;
1023 sample_offset += samples_per_block;
1024 }
1025 break;
1026 }
1028 for (i=0; i<=st; i++) {
1034 }
1035 }
1036 for (i=0; i<=st; i++)
1038
1039 for (n = nb_samples >> (1 - st); n > 0; n--) {
1040 int byte = bytestream2_get_byteu(&gb);
1043 }
1044 break;
1046 for (n = nb_samples >> (1 - st); n > 0; n--) {
1047 int byte = bytestream2_get_byteu(&gb);
1050 }
1051 break;
1053 {
1054 int previous_left_sample, previous_right_sample;
1055 int current_left_sample, current_right_sample;
1056 int next_left_sample, next_right_sample;
1057 int coeff1l, coeff2l, coeff1r, coeff2r;
1058 int shift_left, shift_right;
1059
1060 /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
1061 each coding 28 stereo samples. */
1062
1065
1066 current_left_sample =
sign_extend(bytestream2_get_le16u(&gb), 16);
1067 previous_left_sample =
sign_extend(bytestream2_get_le16u(&gb), 16);
1068 current_right_sample =
sign_extend(bytestream2_get_le16u(&gb), 16);
1069 previous_right_sample =
sign_extend(bytestream2_get_le16u(&gb), 16);
1070
1071 for (count1 = 0; count1 < nb_samples / 28; count1++) {
1072 int byte = bytestream2_get_byteu(&gb);
1077
1078 byte = bytestream2_get_byteu(&gb);
1079 shift_left = 20 - (byte >> 4);
1080 shift_right = 20 - (byte & 0x0F);
1081
1082 for (count2 = 0; count2 < 28; count2++) {
1083 byte = bytestream2_get_byteu(&gb);
1084 next_left_sample =
sign_extend(byte >> 4, 4) << shift_left;
1085 next_right_sample =
sign_extend(byte, 4) << shift_right;
1086
1087 next_left_sample = (next_left_sample +
1088 (current_left_sample * coeff1l) +
1089 (previous_left_sample * coeff2l) + 0x80) >> 8;
1090 next_right_sample = (next_right_sample +
1091 (current_right_sample * coeff1r) +
1092 (previous_right_sample * coeff2r) + 0x80) >> 8;
1093
1094 previous_left_sample = current_left_sample;
1095 current_left_sample = av_clip_int16(next_left_sample);
1096 previous_right_sample = current_right_sample;
1097 current_right_sample = av_clip_int16(next_right_sample);
1098 *samples++ = current_left_sample;
1099 *samples++ = current_right_sample;
1100 }
1101 }
1102
1104
1105 break;
1106 }
1108 {
1110
1111 for(channel = 0; channel < avctx->
channels; channel++) {
1112 int byte = bytestream2_get_byteu(&gb);
1113 for (i=0; i<2; i++)
1115 shift[channel] = 20 - (byte & 0x0F);
1116 }
1117 for (count1 = 0; count1 < nb_samples / 2; count1++) {
1119
1120 byte[0] = bytestream2_get_byteu(&gb);
1121 if (st) byte[1] = bytestream2_get_byteu(&gb);
1122 for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1123 for(channel = 0; channel < avctx->
channels; channel++) {
1125 sample = (sample +
1127 c->
status[channel].
sample2 * coeff[channel][1] + 0x80) >> 8;
1131 }
1132 }
1133 }
1135 break;
1136 }
1140 /* channel numbering
1141 2chan: 0=fl, 1=fr
1142 4chan: 0=fl, 1=rl, 2=fr, 3=rr
1143 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1145 int previous_sample, current_sample, next_sample;
1146 int coeff1, coeff2;
1148 unsigned int channel;
1149 uint16_t *samplesC;
1151 int offsets[6];
1152
1153 for (channel=0; channel<avctx->
channels; channel++)
1154 offsets[channel] = (big_endian ? bytestream2_get_be32(&gb) :
1155 bytestream2_get_le32(&gb)) +
1157
1158 for (channel=0; channel<avctx->
channels; channel++) {
1160 samplesC = samples_p[channel];
1161
1163 current_sample =
sign_extend(bytestream2_get_le16(&gb), 16);
1164 previous_sample =
sign_extend(bytestream2_get_le16(&gb), 16);
1165 } else {
1168 }
1169
1170 for (count1 = 0; count1 < nb_samples / 28; count1++) {
1171 int byte = bytestream2_get_byte(&gb);
1172 if (byte == 0xEE) { /* only seen in R2 and R3 */
1173 current_sample =
sign_extend(bytestream2_get_be16(&gb), 16);
1174 previous_sample =
sign_extend(bytestream2_get_be16(&gb), 16);
1175
1176 for (count2=0; count2<28; count2++)
1177 *samplesC++ =
sign_extend(bytestream2_get_be16(&gb), 16);
1178 } else {
1181 shift = 20 - (byte & 0x0F);
1182
1183 for (count2=0; count2<28; count2++) {
1184 if (count2 & 1)
1186 else {
1187 byte = bytestream2_get_byte(&gb);
1189 }
1190
1191 next_sample += (current_sample * coeff1) +
1192 (previous_sample * coeff2);
1193 next_sample = av_clip_int16(next_sample >> 8);
1194
1195 previous_sample = current_sample;
1196 current_sample = next_sample;
1197 *samplesC++ = current_sample;
1198 }
1199 }
1200 }
1201 if (!count) {
1202 count = count1;
1203 } else if (count != count1) {
1205 count =
FFMAX(count, count1);
1206 }
1207
1211 }
1212 }
1213
1216 break;
1217 }
1219 for (channel=0; channel<avctx->
channels; channel++) {
1221 int16_t *
s = samples_p[channel];
1222 for (n = 0; n < 4; n++, s += 32) {
1224 for (i=0; i<2; i++)
1226 s[0] = val & ~0x0F;
1227
1228 val =
sign_extend(bytestream2_get_le16u(&gb), 16);
1229 shift[
n] = 20 - (val & 0x0F);
1230 s[1] = val & ~0x0F;
1231 }
1232
1233 for (m=2; m<32; m+=2) {
1234 s = &samples_p[channel][
m];
1235 for (n = 0; n < 4; n++, s += 32) {
1237 int byte = bytestream2_get_byteu(&gb);
1238
1240 pred = s[-1] * coeff[0][
n] + s[-2] * coeff[1][
n];
1241 s[0] = av_clip_int16((level + pred + 0x80) >> 8);
1242
1244 pred = s[0] * coeff[0][
n] + s[-1] * coeff[1][
n];
1245 s[1] = av_clip_int16((level + pred + 0x80) >> 8);
1246 }
1247 }
1248 }
1249 break;
1258 }
1259
1260 for (n = nb_samples >> (1 - st); n > 0; n--) {
1261 int v = bytestream2_get_byteu(&gb);
1262
1265 }
1266 break;
1268 for (i = 0; i < avctx->
channels; i++) {
1276 }
1277 }
1278
1279 for (n = nb_samples >> (1 - st); n > 0; n--) {
1280 int v = bytestream2_get_byteu(&gb);
1281
1284 }
1285 break;
1287 for (n = nb_samples >> (1 - st); n > 0; n--) {
1288 int v = bytestream2_get_byteu(&gb);
1291 }
1292 break;
1297 /* the first byte is a raw sample */
1298 *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1299 if (st)
1300 *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1302 nb_samples--;
1303 }
1305 for (n = nb_samples >> (1 - st); n > 0; n--) {
1306 int byte = bytestream2_get_byteu(&gb);
1308 byte >> 4, 4, 0);
1310 byte & 0x0F, 4, 0);
1311 }
1313 for (n = nb_samples / 3; n > 0; n--) {
1314 int byte = bytestream2_get_byteu(&gb);
1316 byte >> 5 , 3, 0);
1318 (byte >> 2) & 0x07, 3, 0);
1320 byte & 0x03, 2, 0);
1321 }
1322 } else {
1323 for (n = nb_samples >> (2 - st); n > 0; n--) {
1324 int byte = bytestream2_get_byteu(&gb);
1326 byte >> 6 , 2, 2);
1328 (byte >> 4) & 0x03, 2, 2);
1330 (byte >> 2) & 0x03, 2, 2);
1332 byte & 0x03, 2, 2);
1333 }
1334 }
1335 break;
1339 break;
1341 for (n = nb_samples >> (1 - st); n > 0; n--) {
1342 int v = bytestream2_get_byteu(&gb);
1345 }
1346 break;
1348 {
1349 int samples_per_block;
1350 int blocks;
1351
1353 samples_per_block = avctx->
extradata[0] / 16;
1354 blocks = nb_samples / avctx->
extradata[0];
1355 } else {
1356 samples_per_block = nb_samples / 16;
1357 blocks = 1;
1358 }
1359
1360 for (m = 0; m < blocks; m++) {
1361 for (channel = 0; channel < avctx->
channels; channel++) {
1364
1365 samples = samples_p[channel] + m * 16;
1366 /* Read in every sample for this channel. */
1367 for (i = 0; i < samples_per_block; i++) {
1368 int byte = bytestream2_get_byteu(&gb);
1369 int scale = 1 << (byte >> 4);
1370 int index = byte & 0xf;
1373
1374 /* Decode 16 samples. */
1375 for (n = 0; n < 16; n++) {
1377
1378 if (n & 1) {
1380 } else {
1381 byte = bytestream2_get_byteu(&gb);
1383 }
1384
1385 sampledat = ((prev1 * factor1 + prev2 * factor2) +
1386 ((sampledat * scale) << 11)) >> 11;
1387 *samples = av_clip_int16(sampledat);
1388 prev2 = prev1;
1389 prev1 = *samples++;
1390 }
1391 }
1392
1395 }
1396 }
1398 break;
1399 }
1401 {
1403 int ch;
1404
1410 }
1411
1413 for (i = 0; i < avctx->
channels; i++)
1414 for (n = 0; n < 16; n++)
1415 table[i][n] =
sign_extend(bytestream2_get_be16u(&tb), 16);
1416 } else {
1417 for (i = 0; i < avctx->
channels; i++)
1418 for (n = 0; n < 16; n++)
1419 table[i][n] =
sign_extend(bytestream2_get_be16u(&gb), 16);
1420
1421 /* Initialize the previous sample. */
1422 for (i = 0; i < avctx->
channels; i++) {
1425 }
1426 }
1427
1428 for (ch = 0; ch < avctx->
channels; ch++) {
1429 samples = samples_p[ch];
1430
1431 /* Read in every sample for this channel. */
1432 for (i = 0; i < nb_samples / 14; i++) {
1433 int byte = bytestream2_get_byteu(&gb);
1434 int index = (byte >> 4) & 7;
1435 unsigned int exp = byte & 0x0F;
1436 int factor1 = table[ch][index * 2];
1437 int factor2 = table[ch][index * 2 + 1];
1438
1439 /* Decode 14 samples. */
1440 for (n = 0; n < 14; n++) {
1442
1443 if (n & 1) {
1445 } else {
1446 byte = bytestream2_get_byteu(&gb);
1448 }
1449
1451 + c->
status[ch].
sample2 * factor2) >> 11) + (sampledat << exp);
1452 *samples = av_clip_int16(sampledat);
1455 }
1456 }
1457 }
1458 break;
1459 }
1461 for (channel = 0; channel < avctx->
channels; channel++) {
1462 samples = samples_p[channel];
1463
1464 /* Read in every sample for this channel. */
1465 for (i = 0; i < nb_samples / 28; i++) {
1467 if (channel)
1469 header = bytestream2_get_byteu(&gb);
1471
1472 /* Decode 28 samples. */
1473 for (n = 0; n < 28; n++) {
1475
1476 switch (header >> 4) {
1477 case 1:
1479 break;
1480 case 2:
1482 break;
1483 case 3:
1485 break;
1486 default:
1487 prev = 0;
1488 }
1489
1490 prev = av_clip((prev + 0x20) >> 6, -0x200000, 0x1fffff);
1491
1492 byte = bytestream2_get_byteu(&gb);
1493 if (!channel)
1495 else
1497
1498 sampledat = (((sampledat << 12) >> (header & 0xf)) << 6) + prev;
1499 *samples++ = av_clip_int16(sampledat >> 6);
1502 }
1503 }
1504 if (!channel)
1506 }
1507 break;
1508
1509 default:
1510 return -1;
1511 }
1512
1516 }
1517
1518 *got_frame_ptr = 1;
1519
1521 }
1522
1523
1531
1532 #define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_) \
1533 AVCodec ff_ ## name_ ## _decoder = { \
1534 .name = #name_, \
1535 .type = AVMEDIA_TYPE_AUDIO, \
1536 .id = id_, \
1537 .priv_data_size = sizeof(ADPCMDecodeContext), \
1538 .init = adpcm_decode_init, \
1539 .decode = adpcm_decode_frame, \
1540 .capabilities = CODEC_CAP_DR1, \
1541 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1542 .sample_fmts = sample_fmts_, \
1543 }
1544
1545 /* Note: Do not forget to add new entries to the Makefile as well. */