Reciprocal gamma function
In mathematics, the reciprocal gamma function is the function {\displaystyle f(z)={\frac {1}{\Gamma (z)}},} where Γ(z) denotes the gamma function. Since the gamma function is meromorphic and nonzero everywhere in the complex plane, its reciprocal is an entire function. As an entire function, it is of order 1 (meaning that log log |1/Γ(z)| grows no faster than log |z|), but of infinite type (meaning that log |1/Γ(z)| grows faster than any multiple of |z|, since its growth is approximately proportional to |z| log |z| in the left-half plane).
The reciprocal is sometimes used as a starting point for numerical computation of the gamma function, and a few software libraries provide it separately from the regular gamma function.
Karl Weierstrass called the reciprocal gamma function the "factorielle" and used it in his development of the Weierstrass factorization theorem.
Infinite product expansion
[edit ]Following from the infinite product definitions for the gamma function, due to Euler and Weierstrass respectively, we get the following infinite product expansion for the reciprocal gamma function: {\displaystyle {\begin{aligned}{\frac {1}{\Gamma (z)}}&=z\prod _{n=1}^{\infty }{\frac {1+{\frac {z}{n}}}{\left(1+{\frac {1}{n}}\right)^{z}}}\\{\frac {1}{\Gamma (z)}}&=ze^{\gamma z}\prod _{n=1}^{\infty }\left(1+{\frac {z}{n}}\right)e^{-{\frac {z}{n}}}\end{aligned}}}
where γ = 0.577216... is the Euler–Mascheroni constant. These expansions are valid for all complex numbers z.
Taylor series
[edit ]Taylor series expansion around 0 gives:[1] {\displaystyle {\frac {1}{\ \Gamma (z)\ }}=z+\gamma \ z^{2}+\left({\frac {\gamma ^{2}}{2}}-{\frac {\pi ^{2}}{12}}\right)\ z^{3}+\left({\frac {\gamma ^{3}}{6}}-{\frac {\gamma \pi ^{2}}{12}}+{\frac {\zeta (3)}{3}}\ \right)z^{4}+\cdots \ } where γ is the Euler–Mascheroni constant. For n > 2, the coefficient an for the zn term can be computed recursively as[2] [3] {\displaystyle a_{n}={\frac {\ {a_{2}\ a_{n-1}+\sum _{j=2}^{n-1}(-1)^{j+1}\ \zeta (j)\ a_{n-j}}\ }{n-1}}={\frac {\ \gamma \ a_{n-1}-\zeta (2)\ a_{n-2}+\zeta (3)\ a_{n-3}-\cdots \ }{n-1}}} where ζ is the Riemann zeta function. An integral representation for these coefficients was recently found by Fekih-Ahmed (2014):[3] {\displaystyle a_{n}={\frac {(-1)^{n}}{\pi n!}}\int _{0}^{\infty }e^{-t}\ \operatorname {Im} {\Bigl [}\ {\bigl (}\log(t)-i\pi {\bigr )}^{n}\ {\Bigr ]}\ \mathrm {d} t~.}
For small values, these give the following values:
| n | an |
|---|---|
| 1 | +1.0000000000000000000000000000000000000000 |
| 2 | +0.5772156649015328606065120900824024310422 |
| 3 | −0.6558780715202538810770195151453904812798 |
| 4 | −0.0420026350340952355290039348754298187114 |
| 5 | +0.1665386113822914895017007951021052357178 |
| 6 | −0.0421977345555443367482083012891873913017 |
| 7 | −0.0096219715278769735621149216723481989754 |
| 8 | +0.0072189432466630995423950103404465727099 |
| 9 | −0.0011651675918590651121139710840183886668 |
| 10 | −0.0002152416741149509728157299630536478065 |
| 11 | +0.0001280502823881161861531986263281643234 |
| 12 | −0.0000201348547807882386556893914210218184 |
| 13 | −0.0000012504934821426706573453594738330922 |
| 14 | +0.0000011330272319816958823741296203307449 |
| 15 | −0.0000002056338416977607103450154130020573 |
| 16 | +0.0000000061160951044814158178624986828553 |
| 17 | +0.0000000050020076444692229300556650480600 |
| 18 | −0.0000000011812745704870201445881265654365 |
| 19 | +0.0000000001043426711691100510491540332312 |
| 20 | +0.0000000000077822634399050712540499373114 |
| 21 | −0.0000000000036968056186422057081878158781 |
| 22 | +0.0000000000005100370287454475979015481323 |
| 23 | −0.0000000000000205832605356650678322242954 |
| 24 | −0.0000000000000053481225394230179823700173 |
| 25 | +0.0000000000000012267786282382607901588938 |
| 26 | −0.0000000000000001181259301697458769513765 |
| 27 | +0.0000000000000000011866922547516003325798 |
| 28 | +0.0000000000000000014123806553180317815558 |
| 29 | −0.0000000000000000002298745684435370206592 |
| 30 | +0.0000000000000000000171440632192733743338 |
Fekih-Ahmed (2014)[3] also gives an approximation for an:
{\displaystyle a_{n}\approx {\frac {(-1)^{n}}{\ (n-1)!\ }}\ {\sqrt {{\frac {2}{\ \pi n\ }}\ }}\ \operatorname {Im} \left({\frac {\ z_{0}^{\left(1/2-n\right)}\ e^{-nz_{0}}\ }{\sqrt {1+z_{0}\ }}}\right)\ ,} where z0 = −1/n exp(W−1(−n)), and W−1 is the negative-first branch of the Lambert W function.
The Taylor expansion around 1 has the same (but shifted) coefficients, i.e.: {\displaystyle {\frac {1}{\Gamma (1+z)}}={\frac {1}{z\Gamma (z)}}=1+\gamma \ z+\left({\frac {\gamma ^{2}}{2}}-{\frac {\pi ^{2}}{12}}\right)\ z^{2}+\left({\frac {\gamma ^{3}}{6}}-{\frac {\gamma \pi ^{2}}{12}}+{\frac {\zeta (3)}{3}}\ \right)z^{3}+\cdots \ } (the reciprocal of Gauss's pi function).
Asymptotic expansion
[edit ]As |z| goes to infinity at a constant arg(z) we have: {\displaystyle \ln(1/\Gamma (z))\sim -z\ln(z)+z+{\tfrac {1}{2}}\ln \left({\frac {z}{2\pi }}\right)-{\frac {1}{12z}}+{\frac {1}{360z^{3}}}-{\frac {1}{1260z^{5}}}\qquad {\text{for}}~\left|\arg(z)\right|<\pi }
Contour integral representation
[edit ]An integral representation due to Hermann Hankel is {\displaystyle {\frac {1}{\Gamma (z)}}={\frac {i}{2\pi }}\oint _{H}(-t)^{-z}e^{-t},円dt,} where H is the Hankel contour, that is, the path encircling 0 in the positive direction, beginning at and returning to positive infinity with respect for the branch cut along the positive real axis. According to Schmelzer & Trefethen,[4] numerical evaluation of Hankel's integral is the basis of some of the best methods for computing the gamma function.
Integral representations at the positive integers
[edit ]For positive integers n ≥ 1, there is an integral for the reciprocal factorial function given by[5] {\displaystyle {\frac {1}{n!}}={\frac {1}{2\pi }}\int _{-\pi }^{\pi }e^{-nit}e^{e^{it}}\ dt.}
Similarly, for any real c > 0 and z ∈ C such that Re(z) > 0 we have the next integral for the reciprocal gamma function along the real axis in the form of:[6] {\displaystyle {\frac {1}{\Gamma (z)}}={\frac {1}{2\pi }}\int _{-\infty }^{\infty }(c+it)^{-z}e^{c+it}dt,} where the particular case when z = n + 1/2 provides a corresponding relation for the reciprocal double factorial function, {\displaystyle {\frac {1}{(2n-1)!!}}={\frac {\sqrt {\pi }}{2^{n}\cdot \Gamma \left(n+{\frac {1}{2}}\right)}}.}
Integral along the real axis
[edit ]Integration of the reciprocal gamma function along the positive real axis gives the value {\displaystyle \int _{0}^{\infty }{\frac {1}{\Gamma (x)}},円dx\approx 2.80777024,} which is known as the Fransén–Robinson constant.[7]
We have the following formula[8] : ch 9, exercise 100 {\displaystyle \int _{0}^{\infty }{\dfrac {a^{x}}{\Gamma (x)}},円dx=ae^{a}+a\int _{0}^{\infty }{\dfrac {e^{-ax}}{\log ^{2}(x)+\pi ^{2}}},円dx}
See also
[edit ]References
[edit ]- ^ Weisstein, Eric W. "Gamma function". mathworld.wolfram.com. Retrieved 2021年06月15日.
- ^ Wrench, J.W. (1968). "Concerning two series for the gamma function". Mathematics of Computation. 22 (103): 617–626. doi:10.1090/S0025-5718-1968-0237078-4 . S2CID 121472614. and
Wrench, J.W. (1973). "Erratum: Concerning two series for the gamma function". Mathematics of Computation. 27 (123): 681–682. doi:10.1090/S0025-5718-1973-0319344-9 . - ^ a b c Fekih-Ahmed, L. (2014). "On the power series expansion of the reciprocal gamma function". HAL archives.
- ^ Schmelzer, Thomas; Trefethen, Lloyd N. (2007). "Computing the Gamma function using contour integrals and rational approximations" . SIAM Journal on Numerical Analysis. 45 (2). Society for Industrial and Applied Mathematics: 558–571. doi:10.1137/050646342.; "Copy on Trefethen's academic website" (PDF). Mathematics, Oxford, UK. Retrieved 2020年08月03日.; "Link to two other copies". CiteSeerX 10.1.1.210.299 .
- ^ Graham, Knuth, and Patashnik (1994). Concrete Mathematics. Addison-Wesley. p. 566.
{{cite book}}: CS1 maint: multiple names: authors list (link) - ^ Schmidt, Maxie D. (2019年05月19日). "A Short Note on Integral Transformations and Conversion Formulas for Sequence Generating Functions". Axioms. 8 (2): 62. arXiv:1809.03933 . doi:10.3390/axioms8020062 .
- ^ Sloane, N. J. A. (ed.). "Sequence A058655 (Decimal expansion of area under the curve 1/Gamma(x) from zero to infinity)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
- ^ Henri Cohen (2007). Number Theory Volume II: Analytic and Modern Tools. Graduate Texts in Mathematics. Vol. 240. doi:10.1007/978-0-387-49894-2. ISBN 978-0-387-49893-5. ISSN 0072-5285.
- Mette Lund, An integral for the reciprocal Gamma function Archived 2020年05月31日 at the Wayback Machine
- Milton Abramowitz & Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
- Eric W. Weisstein, Gamma Function , MathWorld