Quantifier rank
Appearance
From Wikipedia, the free encyclopedia
Depth of nesting of quantifiers in a formula
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations . Please help improve this article by introducing more precise citations. (September 2025) (Learn how and when to remove this message)
In mathematical logic, the quantifier rank of a formula is the depth of nesting of its quantifiers. It plays an essential role in model theory.
The quantifier rank is a property of the formula itself (i.e. the expression in a language). Thus two logically equivalent formulae can have different quantifier ranks, when they express the same thing in different ways.
Definition
[edit ]In first-order logic
[edit ]Let {\displaystyle \varphi } be a first-order formula. The quantifier rank of {\displaystyle \varphi }, written {\displaystyle \operatorname {qr} (\varphi )}, is defined as:
- {\displaystyle \operatorname {qr} (\varphi )=0}, if {\displaystyle \varphi } is atomic.
- {\displaystyle \operatorname {qr} (\varphi _{1}\land \varphi _{2})=\operatorname {qr} (\varphi _{1}\lor \varphi _{2})=\max(\operatorname {qr} (\varphi _{1}),\operatorname {qr} (\varphi _{2}))}.
- {\displaystyle \operatorname {qr} (\lnot \varphi )=\operatorname {qr} (\varphi )}.
- {\displaystyle \operatorname {qr} (\exists _{x}\varphi )=\operatorname {qr} (\varphi )+1}.
- {\displaystyle \operatorname {qr} (\forall _{x}\varphi )=\operatorname {qr} (\varphi )+1}.
Remarks
- We write {\displaystyle \operatorname {FO} [n]} for the set of all first-order formulas {\displaystyle \varphi } with {\displaystyle \operatorname {qr} (\varphi )\leq n}.
- Relational {\displaystyle \operatorname {FO} [n]} (without function symbols) is always of finite size, i.e. contains a finite number of formulas.
- In prenex normal form, the quantifier rank of {\displaystyle \varphi } is exactly the number of quantifiers appearing in {\displaystyle \varphi }.
In higher-order logic
[edit ]For fixed-point logic, with a least fixed-point operator {\displaystyle \operatorname {LFP} }: {\displaystyle \operatorname {qr} ([\operatorname {LFP} _{\phi }]y)=1+\operatorname {qr} (\phi )}.
Examples
[edit ]- A sentence of quantifier rank 2:
- {\displaystyle \forall x\exists yR(x,y)}
- A formula of quantifier rank 1:
- {\displaystyle \forall xR(y,x)\wedge \exists xR(x,y)}
- A formula of quantifier rank 0:
- {\displaystyle R(x,y)\wedge x\neq y}
- A sentence in prenex normal form of quantifier rank 3:
- {\displaystyle \forall x\exists y\exists z((x\neq y\wedge xRy)\wedge (x\neq z\wedge zRx))}
- A sentence, equivalent to the previous, although of quantifier rank 2:
- {\displaystyle \forall x(\exists y(x\neq y\wedge xRy))\wedge \exists z(x\neq z\wedge zRx))}
See also
[edit ]References
[edit ]- Ebbinghaus, Heinz-Dieter; Flum, Jörg (1995), Finite Model Theory, Springer, ISBN 978-3-540-60149-4 .
- Grädel, Erich; Kolaitis, Phokion G.; Libkin, Leonid; Maarten, Marx; Spencer, Joel; Vardi, Moshe Y.; Venema, Yde; Weinstein, Scott (2007), Finite model theory and its applications, Texts in Theoretical Computer Science. An EATCS Series, Berlin: Springer-Verlag, p. 133, ISBN 978-3-540-00428-8, Zbl 1133.03001 .
External links
[edit ]- Quantifier Rank Spectrum of L-infinity-omega BA Thesis, 2000