Jump to content
Wikipedia The Free Encyclopedia

Quantifier rank

From Wikipedia, the free encyclopedia
Depth of nesting of quantifiers in a formula
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations . Please help improve this article by introducing more precise citations. (September 2025) (Learn how and when to remove this message)

In mathematical logic, the quantifier rank of a formula is the depth of nesting of its quantifiers. It plays an essential role in model theory.

The quantifier rank is a property of the formula itself (i.e. the expression in a language). Thus two logically equivalent formulae can have different quantifier ranks, when they express the same thing in different ways.

Definition

[edit ]

In first-order logic

[edit ]

Let φ {\displaystyle \varphi } {\displaystyle \varphi } be a first-order formula. The quantifier rank of φ {\displaystyle \varphi } {\displaystyle \varphi }, written qr ( φ ) {\displaystyle \operatorname {qr} (\varphi )} {\displaystyle \operatorname {qr} (\varphi )}, is defined as:

  • qr ( φ ) = 0 {\displaystyle \operatorname {qr} (\varphi )=0} {\displaystyle \operatorname {qr} (\varphi )=0}, if φ {\displaystyle \varphi } {\displaystyle \varphi } is atomic.
  • qr ( φ 1 φ 2 ) = qr ( φ 1 φ 2 ) = max ( qr ( φ 1 ) , qr ( φ 2 ) ) {\displaystyle \operatorname {qr} (\varphi _{1}\land \varphi _{2})=\operatorname {qr} (\varphi _{1}\lor \varphi _{2})=\max(\operatorname {qr} (\varphi _{1}),\operatorname {qr} (\varphi _{2}))} {\displaystyle \operatorname {qr} (\varphi _{1}\land \varphi _{2})=\operatorname {qr} (\varphi _{1}\lor \varphi _{2})=\max(\operatorname {qr} (\varphi _{1}),\operatorname {qr} (\varphi _{2}))}.
  • qr ( ¬ φ ) = qr ( φ ) {\displaystyle \operatorname {qr} (\lnot \varphi )=\operatorname {qr} (\varphi )} {\displaystyle \operatorname {qr} (\lnot \varphi )=\operatorname {qr} (\varphi )}.
  • qr ( x φ ) = qr ( φ ) + 1 {\displaystyle \operatorname {qr} (\exists _{x}\varphi )=\operatorname {qr} (\varphi )+1} {\displaystyle \operatorname {qr} (\exists _{x}\varphi )=\operatorname {qr} (\varphi )+1}.
  • qr ( x φ ) = qr ( φ ) + 1 {\displaystyle \operatorname {qr} (\forall _{x}\varphi )=\operatorname {qr} (\varphi )+1} {\displaystyle \operatorname {qr} (\forall _{x}\varphi )=\operatorname {qr} (\varphi )+1}.

Remarks

  • We write FO [ n ] {\displaystyle \operatorname {FO} [n]} {\displaystyle \operatorname {FO} [n]} for the set of all first-order formulas φ {\displaystyle \varphi } {\displaystyle \varphi } with qr ( φ ) n {\displaystyle \operatorname {qr} (\varphi )\leq n} {\displaystyle \operatorname {qr} (\varphi )\leq n}.
  • Relational FO [ n ] {\displaystyle \operatorname {FO} [n]} {\displaystyle \operatorname {FO} [n]} (without function symbols) is always of finite size, i.e. contains a finite number of formulas.
  • In prenex normal form, the quantifier rank of φ {\displaystyle \varphi } {\displaystyle \varphi } is exactly the number of quantifiers appearing in φ {\displaystyle \varphi } {\displaystyle \varphi }.

In higher-order logic

[edit ]

For fixed-point logic, with a least fixed-point operator LFP {\displaystyle \operatorname {LFP} } {\displaystyle \operatorname {LFP} }: qr ( [ LFP ϕ ] y ) = 1 + qr ( ϕ ) {\displaystyle \operatorname {qr} ([\operatorname {LFP} _{\phi }]y)=1+\operatorname {qr} (\phi )} {\displaystyle \operatorname {qr} ([\operatorname {LFP} _{\phi }]y)=1+\operatorname {qr} (\phi )}.

Examples

[edit ]
  • A sentence of quantifier rank 2:
x y R ( x , y ) {\displaystyle \forall x\exists yR(x,y)} {\displaystyle \forall x\exists yR(x,y)}
  • A formula of quantifier rank 1:
x R ( y , x ) x R ( x , y ) {\displaystyle \forall xR(y,x)\wedge \exists xR(x,y)} {\displaystyle \forall xR(y,x)\wedge \exists xR(x,y)}
  • A formula of quantifier rank 0:
R ( x , y ) x y {\displaystyle R(x,y)\wedge x\neq y} {\displaystyle R(x,y)\wedge x\neq y}
x y z ( ( x y x R y ) ( x z z R x ) ) {\displaystyle \forall x\exists y\exists z((x\neq y\wedge xRy)\wedge (x\neq z\wedge zRx))} {\displaystyle \forall x\exists y\exists z((x\neq y\wedge xRy)\wedge (x\neq z\wedge zRx))}
  • A sentence, equivalent to the previous, although of quantifier rank 2:
x ( y ( x y x R y ) ) z ( x z z R x ) ) {\displaystyle \forall x(\exists y(x\neq y\wedge xRy))\wedge \exists z(x\neq z\wedge zRx))} {\displaystyle \forall x(\exists y(x\neq y\wedge xRy))\wedge \exists z(x\neq z\wedge zRx))}

See also

[edit ]

References

[edit ]
[edit ]
General
Theorems (list)
 and paradoxes
Logics
Traditional
Propositional
Predicate
Set theory
Types of sets
Maps and cardinality
Set theories
Formal systems (list),
language and syntax
Example axiomatic
systems
 (list)
Proof theory
Model theory
Computability theory
Related

AltStyle によって変換されたページ (->オリジナル) /