Orbital stability
In mathematical physics and the theory of partial differential equations, the solitary wave solution of the form {\displaystyle u(x,t)=e^{-i\omega t}\phi (x)} is said to be orbitally stable if any solution with the initial data sufficiently close to {\displaystyle \phi (x)} forever remains in a given small neighborhood of the trajectory of {\displaystyle e^{-i\omega t}\phi (x).}
Formal definition
[edit ]Formal definition is as follows.[1] Consider the dynamical system
- {\displaystyle i{\frac {du}{dt}}=A(u),\qquad u(t)\in X,\quad t\in \mathbb {R} ,}
with {\displaystyle X} a Banach space over {\displaystyle \mathbb {C} }, and {\displaystyle A:X\to X}. We assume that the system is {\displaystyle \mathrm {U} (1)}-invariant, so that {\displaystyle A(e^{is}u)=e^{is}A(u)} for any {\displaystyle u\in X} and any {\displaystyle s\in \mathbb {R} }.
Assume that {\displaystyle \omega \phi =A(\phi )}, so that {\displaystyle u(t)=e^{-i\omega t}\phi } is a solution to the dynamical system. We call such solution a solitary wave.
We say that the solitary wave {\displaystyle e^{-i\omega t}\phi } is orbitally stable if for any {\displaystyle \epsilon >0} there is {\displaystyle \delta >0} such that for any {\displaystyle v_{0}\in X} with {\displaystyle \Vert \phi -v_{0}\Vert _{X}<\delta } there is a solution {\displaystyle v(t)} defined for all {\displaystyle t\geq 0} such that {\displaystyle v(0)=v_{0}}, and such that this solution satisfies
- {\displaystyle \sup _{t\geq 0}\inf _{s\in \mathbb {R} }\Vert v(t)-e^{is}\phi \Vert _{X}<\epsilon .}
Example
[edit ]According to [2] ,[3] the solitary wave solution {\displaystyle e^{-i\omega t}\phi _{\omega }(x)} to the nonlinear Schrödinger equation
- {\displaystyle i{\frac {\partial }{\partial t}}u=-{\frac {\partial ^{2}}{\partial x^{2}}}u+g\!\left(|u|^{2}\right)u,\qquad u(x,t)\in \mathbb {C} ,\quad x\in \mathbb {R} ,\quad t\in \mathbb {R} ,}
where {\displaystyle g} is a smooth real-valued function, is orbitally stable if the Vakhitov–Kolokolov stability criterion is satisfied:
- {\displaystyle {\frac {d}{d\omega }}Q(\phi _{\omega })<0,}
where
- {\displaystyle Q(u)={\frac {1}{2}}\int _{\mathbb {R} }|u(x,t)|^{2},円dx}
is the charge of the solution {\displaystyle u(x,t)}, which is conserved in time (at least if the solution {\displaystyle u(x,t)} is sufficiently smooth).
It was also shown,[4] [5] that if {\textstyle {\frac {d}{d\omega }}Q(\omega )<0} at a particular value of {\displaystyle \omega }, then the solitary wave {\displaystyle e^{-i\omega t}\phi _{\omega }(x)} is Lyapunov stable, with the Lyapunov function given by {\displaystyle L(u)=E(u)-\omega Q(u)+\Gamma (Q(u)-Q(\phi _{\omega }))^{2}}, where {\displaystyle E(u)={\frac {1}{2}}\int _{\mathbb {R} }\left(\left|{\frac {\partial u}{\partial x}}\right|^{2}+G\!\left(|u|^{2}\right)\right)dx} is the energy of a solution {\displaystyle u(x,t)}, with {\textstyle G(y)=\int _{0}^{y}g(z),円dz} the antiderivative of {\displaystyle g}, as long as the constant {\displaystyle \Gamma >0} is chosen sufficiently large.
See also
[edit ]References
[edit ]- ^ Manoussos Grillakis; Jalal Shatah & Walter Strauss (1990). "Stability theory of solitary waves in the presence of symmetry". J. Funct. Anal. 94 (2): 308–348. doi:10.1016/0022-1236(90)90016-E .
- ^ T. Cazenave & P.-L. Lions (1982). "Orbital stability of standing waves for some nonlinear Schrödinger equations" . Comm. Math. Phys. 85 (4): 549–561. Bibcode:1982CMaPh..85..549C. doi:10.1007/BF01403504. S2CID 120472894.
- ^ Jerry Bona; Panagiotis Souganidis & Walter Strauss (1987). "Stability and instability of solitary waves of Korteweg-de Vries type". Proceedings of the Royal Society A . 411 (1841): 395–412. Bibcode:1987RSPSA.411..395B. doi:10.1098/rspa.1987.0073. S2CID 120894859.
- ^ Michael I. Weinstein (1986). "Lyapunov stability of ground states of nonlinear dispersive evolution equations". Comm. Pure Appl. Math. 39 (1): 51–67. doi:10.1002/cpa.3160390103.
- ^ Richard Jordan & Bruce Turkington (2001). "Statistical equilibrium theories for the nonlinear Schrödinger equation". Advances in Wave Interaction and Turbulence. Contemp. Math. Vol. 283. South Hadley, MA. pp. 27–39. doi:10.1090/conm/283/04711. ISBN 9780821827147.
{{cite book}}: CS1 maint: location missing publisher (link)