Numerical range
In the mathematical field of linear algebra and convex analysis, the numerical range or field of values or Wertvorrat or Wertevorrat of a complex {\displaystyle n\times n} matrix A is the set
- {\displaystyle W(A)=\left\{{\frac {\mathbf {x} ^{*}A\mathbf {x} }{\mathbf {x} ^{*}\mathbf {x} }}\mid \mathbf {x} \in \mathbb {C} ^{n},\ \mathbf {x} \neq 0\right\}=\left\{\langle \mathbf {x} ,A\mathbf {x} \rangle \mid \mathbf {x} \in \mathbb {C} ^{n},\ \|\mathbf {x} \|_{2}=1\right\}}
where {\displaystyle \mathbf {x} ^{*}} denotes the conjugate transpose of the vector {\displaystyle \mathbf {x} }. The numerical range includes, in particular, the diagonal entries of the matrix (obtained by choosing x equal to the unit vectors along the coordinate axes) and the eigenvalues of the matrix (obtained by choosing x equal to the eigenvectors).
Equivalently, the elements of {\textstyle W(A)} are of the form {\textstyle \operatorname {tr} (AP)}, where {\textstyle P} is a Hermitian projection operator from {\textstyle \mathbb {C} ^{2}} to a one-dimensional subspace.
In engineering, numerical ranges are used as a rough estimate of eigenvalues of A. Recently, generalizations of the numerical range are used to study quantum computing.
A related concept is the numerical radius, which is the largest absolute value of the numbers in the numerical range, i.e.
- {\displaystyle r(A)=\sup\{|\lambda |:\lambda \in W(A)\}=\sup _{\|x\|_{2}=1}|\langle \mathbf {x} ,A\mathbf {x} \rangle |.}
Properties
[edit ]Let sum of sets denote a sumset.
General properties
- The numerical range is the range of the Rayleigh quotient.
- (Hausdorff–Toeplitz theorem) The numerical range is convex and compact.
- {\displaystyle W(\alpha A+\beta I)=\alpha W(A)+\{\beta \}} for all square matrix {\displaystyle A} and complex numbers {\displaystyle \alpha } and {\displaystyle \beta }. Here {\displaystyle I} is the identity matrix.
- {\displaystyle W(A)} is a subset of the closed right half-plane if and only if {\displaystyle A+A^{*}} is positive semidefinite.
- The numerical range {\displaystyle W(\cdot )} is the only function on the set of square matrices that satisfies (2), (3) and (4).
- {\displaystyle W(UAU^{*})=W(A)} for any unitary {\displaystyle U}.
- {\displaystyle W(A^{*})=W(A)^{*}}.
- If {\displaystyle A} is Hermitian, then {\displaystyle W(A)} is on the real line. If {\displaystyle A} is anti-Hermitian, then {\displaystyle W(A)} is on the imaginary line.
- {\displaystyle W(A)=\{z\}} if and only if {\displaystyle A=zI}.
- (Sub-additive) {\displaystyle W(A+B)\subseteq W(A)+W(B)}.
- {\displaystyle W(A)} contains all the eigenvalues of {\displaystyle A}.
- The numerical range of a {\displaystyle 2\times 2} matrix is a filled ellipse.
- {\displaystyle W(A)} is a real line segment {\displaystyle [\alpha ,\beta ]} if and only if {\displaystyle A} is a Hermitian matrix with its smallest and the largest eigenvalues being {\displaystyle \alpha } and {\displaystyle \beta }.
- If {\textstyle A} is normal, and {\textstyle x\in \operatorname {span} (v_{1},\dots ,v_{k})}, where {\textstyle v_{1},\ldots ,v_{k}} are eigenvectors of {\textstyle A} corresponding to {\textstyle \lambda _{1},\ldots ,\lambda _{k}}, respectively, then {\textstyle \langle x,Ax\rangle \in \operatorname {hull} \left(\lambda _{1},\ldots ,\lambda _{k}\right)}.
- If {\displaystyle A} is a normal matrix then {\displaystyle W(A)} is the convex hull of its eigenvalues.
- If {\displaystyle \alpha } is a sharp point on the boundary of {\displaystyle W(A)}, then {\displaystyle \alpha } is a normal eigenvalue of {\displaystyle A}.
Numerical radius
- {\displaystyle r(\cdot )} is a unitarily invariant norm on the space of {\displaystyle n\times n} matrices.
- {\displaystyle r(A)\leq \|A\|_{\operatorname {op} }\leq 2r(A)}, where {\displaystyle \|\cdot \|_{\operatorname {op} }} denotes the operator norm.[1] [2] [3] [4]
- {\displaystyle r(A)=\|A\|_{\operatorname {op} }} if (but not only if) {\displaystyle A} is normal.
- {\displaystyle r(A^{n})\leq r(A)^{n}}.
Proofs
[edit ]Most of the claims are obvious. Some are not.
General properties
[edit ]If {\textstyle A} is Hermitian, then it is normal, so it is the convex hull of its eigenvalues, which are all real.
Conversely, assume {\textstyle W(A)} is on the real line. Decompose {\textstyle A=B+C}, where {\textstyle B} is a Hermitian matrix, and {\textstyle C} an anti-Hermitian matrix. Since {\textstyle W(C)} is on the imaginary line, if {\textstyle C\neq 0}, then {\textstyle W(A)} would stray from the real line. Thus {\textstyle C=0}, and {\textstyle A} is Hermitian.
The following proof is due to[5]
The elements of {\textstyle W(A)} are of the form {\textstyle \operatorname {tr} (AP)}, where {\textstyle P} is projection from {\textstyle \mathbb {C} ^{2}} to a one-dimensional subspace.
The space of all one-dimensional subspaces of {\textstyle \mathbb {C} ^{2}} is {\textstyle \mathbb {P} \mathbb {C} ^{1}}, which is a 2-sphere. The image of a 2-sphere under a linear projection is a filled ellipse.
In more detail, such {\textstyle P} are of the form {\displaystyle {\frac {1}{2}}I+{\frac {1}{2}}{\begin{bmatrix}\cos 2\theta &e^{i\phi }\sin 2\theta \\e^{-i\phi }\sin 2\theta &-\cos 2\theta \end{bmatrix}}={\frac {1}{2}}{\begin{bmatrix}1+z&x+iy\\x-iy&1-z\end{bmatrix}}} where {\textstyle x,y,z}, satisfying {\textstyle x^{2}+y^{2}+z^{2}=1}, is a point on the unit 2-sphere.
Therefore, the elements of {\textstyle W(A)}, regarded as elements of {\textstyle \mathbb {R} ^{2}} is the composition of two real linear maps {\textstyle (x,y,z)\mapsto {\frac {1}{2}}{\begin{bmatrix}1+z&x+iy\\x-iy&1-z\end{bmatrix}}} and {\textstyle M\mapsto \operatorname {tr} (AM)}, which maps the 2-sphere to a filled ellipse.
{\textstyle W(A)} is the image of a continuous map {\textstyle x\mapsto \langle x,Ax\rangle } from the {\displaystyle \mathbb {PC} ^{n}}, so it is compact.
Given two complex nonzero vectors {\textstyle x,y}, let {\textstyle P_{x},P_{y}} be their corresponding Hermitian projectors from {\textstyle \mathbb {C} ^{n}} to their respective spans. Let {\textstyle P} be the Hermitian projector to the span of both. We have that {\textstyle P^{*}AP} is an operator on {\textstyle \operatorname {Span} (x,y)}.
Therefore, the "restricted numerical range" of {\textstyle P^{*}AP}, defined by {\textstyle \{\operatorname {Tr} (P^{*}APP_{z}):z\in \operatorname {Span} (x,y),z\neq 0\}}, is a closed ellipse, according to (12). It is also the case that if {\textstyle z\in \operatorname {Span} (x,y)} is nonzero, then {\textstyle \operatorname {Tr} (P^{*}APP_{z})=\operatorname {Tr} (APP_{z}P)=\operatorname {Tr} (AP_{z})\in W(A)}. Therefore, the restricted numerical range is contained in the full numerical range of {\textstyle A}.
Thus, if {\textstyle W(A)} contains {\textstyle \operatorname {Tr} (AP_{x}),\operatorname {Tr} (AP_{y})}, then it contains a closed ellipse that also contains {\textstyle \operatorname {Tr} (AP_{x}),\operatorname {Tr} (AP_{y})}, so it contains the line segment between them.
Let {\textstyle W} satisfy these properties. Let {\textstyle W_{0}} be the original numerical range.
Fix some matrix {\textstyle A}. We show that the supporting planes of {\textstyle W(A)} and {\textstyle W_{0}(A)} are identical. This would then imply that {\textstyle W(A)=W_{0}(A)} since they are both convex and compact.
By property (4), {\textstyle W(A)} is nonempty. Let {\textstyle z} be a point on the boundary of {\textstyle W(A)}, then we can translate and rotate the complex plane so that the point translates to the origin, and the region {\textstyle W(A)} falls entirely within {\textstyle \mathbb {C} ^{+}}. That is, for some {\textstyle \phi \in \mathbb {R} }, the set {\textstyle e^{i\phi }(W(A)-z)} lies entirely within {\textstyle \mathbb {C} ^{+}}, while for any {\textstyle t>0}, the set {\textstyle e^{i\phi }(W(A)-z)-tI} does not lie entirely in {\textstyle \mathbb {C} ^{+}}.
The two properties of {\textstyle W} then imply that {\displaystyle e^{i\phi }(A-z)+e^{-i\phi }(A-z)^{*}\succeq 0} and that inequality is sharp, meaning that {\textstyle e^{i\phi }(A-z)+e^{-i\phi }(A-z)^{*}} has a zero eigenvalue. This is a complete characterization of the supporting planes of {\textstyle W(A)}.
The same argument applies to {\textstyle W_{0}(A)}, so they have the same supporting planes.
Normal matrices
[edit ]For (2), if {\textstyle A} is normal, then it has a full eigenbasis, so it reduces to (1).
Since {\textstyle A} is normal, by the spectral theorem, there exists a unitary matrix {\textstyle U} such that {\textstyle A=UDU^{*}}, where {\textstyle D} is a diagonal matrix containing the eigenvalues {\textstyle \lambda _{1},\lambda _{2},\ldots ,\lambda _{n}} of {\textstyle A}.
Let {\textstyle x=c_{1}v_{1}+c_{2}v_{2}+\cdots +c_{k}v_{k}}. Using the linearity of the inner product, that {\textstyle Av_{j}=\lambda _{j}v_{j}}, and that {\textstyle \left\{v_{i}\right\}} are orthonormal, we have:
{\displaystyle \langle x,Ax\rangle =\sum _{i,j=1}^{k}c_{i}^{*}c_{j}\left\langle v_{i},\lambda _{j}v_{j}\right\rangle =\sum _{i=1}^{k}\left|c_{i}\right|^{2}\lambda _{i}\in \operatorname {hull} \left(\lambda _{1},\ldots ,\lambda _{k}\right)}
By affineness of {\textstyle W}, we can translate and rotate the complex plane, so that we reduce to the case where {\textstyle \partial W(A)} has a sharp point at {\textstyle 0}, and that the two supporting planes at that point both make an angle {\textstyle \phi _{1},\phi _{2}} with the imaginary axis, such that {\textstyle \phi _{1}<\phi _{2},e^{i\phi _{1}}\neq e^{i\phi _{2}}} since the point is sharp.
Since {\textstyle 0\in W(A)}, there exists a unit vector {\textstyle x_{0}} such that {\textstyle x_{0}^{*}Ax_{0}=0}.
By general property (4), the numerical range lies in the sectors defined by: {\displaystyle \operatorname {Re} \left(e^{i\theta }\langle x,Ax\rangle \right)\geq 0\quad {\text{for all }}\theta \in [\phi _{1},\phi _{2}]{\text{ and nonzero }}x\in \mathbb {C} ^{n}.} At {\textstyle x=x_{0}}, the directional derivative in any direction {\textstyle y} must vanish to maintain non-negativity. Specifically:
{\displaystyle \left.{\frac {d}{dt}}\operatorname {Re} \left(e^{i\theta }\langle x_{0}+ty,A(x_{0}+ty)\rangle \right)\right|_{t=0}=0\quad \forall y\in \mathbb {C} ^{n},\theta \in [\phi _{1},\phi _{2}].} Expanding this derivative:
{\displaystyle \operatorname {Re} \left(e^{i\theta }\left(\langle y,Ax_{0}\rangle +\langle x_{0},Ay\rangle \right)\right)=0\quad \forall y\in \mathbb {C} ^{n},\theta \in [\phi _{1},\phi _{2}].}
Since the above holds for all {\textstyle \theta \in [\phi _{1},\phi _{2}]}, we must have: {\displaystyle \langle y,Ax_{0}\rangle +\langle x_{0},Ay\rangle =0\quad \forall y\in \mathbb {C} ^{n}.}
For any {\textstyle y\in \mathbb {C} ^{n}} and {\textstyle \alpha \in \mathbb {C} }, substitute {\textstyle \alpha y} into the equation: {\displaystyle \alpha \langle y,Ax_{0}\rangle +\alpha ^{*}\langle x_{0},Ay\rangle =0.} Choose {\textstyle \alpha =1} and {\textstyle \alpha =i}, then simplify, we obtain {\displaystyle \langle y,Ax_{0}\rangle =0} for all {\displaystyle y}, thus {\textstyle Ax_{0}=0}.
Numerical radius
[edit ]Let {\textstyle v=\arg \max _{\|x\|_{2}=1}|\langle x,Ax\rangle |}. We have {\textstyle r(A)=|\langle v,Av\rangle |}.
By Cauchy–Schwarz, {\displaystyle |\langle v,Av\rangle |\leq \|v\|_{2}\|Av\|_{2}=\|Av\|_{2}\leq \|A\|_{op}}
For the other one, let {\textstyle A=B+iC}, where {\textstyle B,C} are Hermitian. {\displaystyle \|A\|_{op}\leq \|B\|_{op}+\|C\|_{op}}
Since {\textstyle W(B)} is on the real line, and {\textstyle W(iC)} is on the imaginary line, the extremal points of {\textstyle W(B),W(iC)} appear in {\textstyle W(A)}, shifted, thus both {\textstyle \|B\|_{op}=r(B)\leq r(A),\|C\|_{op}=r(iC)\leq r(A)}.
Generalisations
[edit ]Higher-rank numerical range
[edit ]The numerical range is equivalent to the following definition:{\displaystyle W(A)=\{\lambda \in \mathbb {C} :PMP=\lambda P{\text{ for some Hermitian projector }}P{\text{ of rank }}1\}}This allows a generalization to higher-rank numerical ranges, one for each {\displaystyle k=1,2,3,\dots }:[6] {\displaystyle W_{k}(A)=\{\lambda \in \mathbb {C} :PMP=\lambda P{\text{ for some Hermitian projector }}P{\text{ of rank }}k\}}{\displaystyle W_{k}(A)} is always closed and convex,[7] [8] but it might be empty. It is guaranteed to be nonempty if {\displaystyle k<n/3+1}, and there exists some {\displaystyle A} such that {\displaystyle W_{k}(A)} is empty if {\displaystyle k\geq n/3+1}.[9]
See also
[edit ]Bibliography
[edit ]Books
- Bonsall, F.F.; Duncan, J. (1971), Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, Cambridge University Press, ISBN 978-0-521-07988-4
- Bonsall, F.F.; Duncan, J. (1973), Numerical Ranges II, Cambridge University Press, ISBN 978-0-521-20227-5
- Horn, Roger A.; Johnson, Charles R. (1991), Topics in Matrix Analysis, Cambridge University Press, Chapter 1, ISBN 978-0-521-46713-1 .
- Horn, Roger A.; Johnson, Charles R. (1990), Matrix Analysis, Cambridge University Press, Ch. 5.7, ex. 21, ISBN 0-521-30586-1
- Bhatia, Rajendra (1997). Matrix analysis. Graduate texts in mathematics. New York Berlin Heidelberg: Springer. ISBN 978-0-387-94846-1.
- Gustafson, Karl E.; Rao, Duggirala K. M. (1997). Numerical Range: The Field of Values of Linear Operators and Matrices. Universitext. New York, NY: Springer. doi:10.1007/978-1-4613-8498-4. ISBN 978-0-387-94835-5. ISSN 0172-5939.
Papers
- Toeplitz, Otto (1918). "Das algebraische Analogon zu einem Satze von Fejér" (PDF). Mathematische Zeitschrift (in German). 2 (1–2): 187–197. doi:10.1007/BF01212904 . ISSN 0025-5874.
- Hausdorff, Felix (1919). "Der Wertvorrat einer Bilinearform". Mathematische Zeitschrift (in German). 3 (1): 314–316. doi:10.1007/BF01292610. ISSN 0025-5874.
- Choi, M.D.; Kribs, D.W.; Życzkowski (2006), "Quantum error correcting codes from the compression formalism", Rep. Math. Phys., 58 (1): 77–91, arXiv:quant-ph/0511101 , Bibcode:2006RpMP...58...77C, doi:10.1016/S0034-4877(06)80041-8, S2CID 119427312 .
- Dirr, G.; Helmkel, U.; Kleinsteuber, M.; Schulte-Herbrüggen, Th. (2006), "A new type of C-numerical range arising in quantum computing", Proc. Appl. Math. Mech., 6: 711–712, doi:10.1002/pamm.200610336
- Li, C.K. (1996), "A simple proof of the elliptical range theorem", Proc. Am. Math. Soc., 124 (7): 1985, doi:10.1090/S0002-9939-96-03307-2 .
- Keeler, Dennis S.; Rodman, Leiba; Spitkovsky, Ilya M. (1997), "The numerical range of 3 ×ばつ 3 matrices", Linear Algebra and Its Applications, 252 (1–3): 115, doi:10.1016/0024-3795(95)00674-5 .
- Johnson, Charles R. (1976). "Functional characterizations of the field of values and the convex hull of the spectrum" (PDF). Proceedings of the American Mathematical Society. 61 (2). American Mathematical Society (AMS): 201–204. doi:10.1090/s0002-9939-1976-0437555-3 . ISSN 0002-9939.
References
[edit ]- ^ ""well-known" inequality for numerical radius of an operator". StackExchange .
- ^ "Upper bound for norm of Hilbert space operator". StackExchange .
- ^ "Inequalities for numerical radius of complex Hilbert space operator". StackExchange .
- ^ Hilary Priestley. "B4b hilbert spaces: extended synopses 9. Spectral theory" (PDF).
In fact, ‖T‖ = max(−mT , MT) = wT. This fails for non-self-adjoint operators, but wT ≤ ‖T‖ ≤ 2wT in the complex case.
- ^ Davis, Chandler (June 1971). "The Toeplitz-Hausdorff Theorem Explained". Canadian Mathematical Bulletin. 14 (2): 245–246. doi:10.4153/CMB-1971-042-7. ISSN 0008-4395.
- ^ Choi, Man-Duen; Kribs, David W.; Życzkowski, Karol (October 2006). "Higher-rank numerical ranges and compression problems" . Linear Algebra and its Applications. 418 (2–3): 828–839. doi:10.1016/j.laa.2006年03月01日9.
- ^ Li, Chi-Kwong; Sze, Nung-Sing (2008). "Canonical Forms, Higher Rank Numerical Ranges, Totally Isotropic Subspaces, and Matrix Equations". Proceedings of the American Mathematical Society. 136 (9): 3013–3023. ISSN 0002-9939.
- ^ Woerdeman, Hugo J. (2008年01月01日). "The higher rank numerical range is convex" . Linear and Multilinear Algebra. 56 (1–2): 65–67. doi:10.1080/03081080701352211. ISSN 0308-1087.
- ^ Li, Chi-Kwong; Poon, Yiu-Tung; Sze, Nung-Sing (2009年06月01日). "Condition for the higher rank numerical range to be non-empty". Linear and Multilinear Algebra. 57 (4): 365–368. arXiv:0706.1540 . doi:10.1080/03081080701786384. ISSN 0308-1087.