Jump to content
Wikipedia The Free Encyclopedia

File:Borromean-rings minimal-overlap.svg

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
Original file (SVG file, nominally 640 ×ばつ 600 pixels, file size: 5 KB)
This is a file from the Wikimedia Commons. Information from its description page there is shown below.
Commons is a freely licensed media file repository. You can help.

Summary

DescriptionBorromean-rings minimal-overlap.svg

The Borromean rings configuration of knot theory, depicted using same-size circles, without an area enclosed by all three circles. For a depiction with central overlap, see File:BorromeanRings.svg, etc.

For configurations of three linked rings which are not Borromean, see File:Two-representations-of-L6n1-link-as-linked-circles.svg
Date
Source

Own work (Original text: Self-made graphic, converted from a version of the following vector PostScript source code:)

%!
300 282 translate/plr{dup 3 2 roll 72 mul 90 add dup 3 1
roll cos mul 3 1 roll sin mul}def 23.1130905 setlinewidth
/A{0.5 4 4.5{100 plr 78 0 360 arc closepath stroke}for 0
182 plr 78 0 360 arc closepath stroke}def A 11.5565453
setlinewidth 1 setgray A showpage
%EOF
Author AnonMoos
SVG development
InfoField
The SVG code is valid .
This vector image was created with an unknown SVG tool.

Licensing

Public domainPublic domainfalsefalse
[画像:Public domain] I, the copyright holder of this work, release this work into the public domain . This applies worldwide.
In some countries this may not be legally possible; if so:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.

Captions

Add a one-line explanation of what this file represents
重なりを最小限に抑えたボロメアン環
depicts<\/a>"}},"text\/plain":{"en":{"":"depicts"}}},"{\"value\":{\"entity-type\":\"item\",\"numeric-id\":894166,\"id\":\"Q894166\"},\"type\":\"wikibase-entityid\"}":{"text\/html":{"en":{"P180":"Borromean rings<\/a>"}},"text\/plain":{"en":{"P180":"Borromean rings"}}},"{\"value\":{\"entity-type\":\"property\",\"numeric-id\":1114,\"id\":\"P1114\"},\"type\":\"wikibase-entityid\"}":{"text\/html":{"en":{"":"quantity<\/a>"}},"text\/plain":{"en":{"":"quantity"}}},"{\"value\":{\"amount\":\"+1\",\"unit\":\"1\"},\"type\":\"quantity\"}":{"text\/html":{"en":{"P1114":"1"}},"text\/plain":{"en":{"P1114":"1"}}},"{\"value\":{\"entity-type\":\"property\",\"numeric-id\":462,\"id\":\"P462\"},\"type\":\"wikibase-entityid\"}":{"text\/html":{"en":{"":"color<\/a>"}},"text\/plain":{"en":{"":"color"}}},"{\"value\":{\"entity-type\":\"item\",\"numeric-id\":10770146,\"id\":\"Q10770146\"},\"type\":\"wikibase-entityid\"}":{"text\/html":{"en":{"P462":"monochrome<\/a>"}},"text\/plain":{"en":{"P462":"monochrome"}}},"{\"value\":{\"entity-type\":\"property\",\"numeric-id\":527,\"id\":\"P527\"},\"type\":\"wikibase-entityid\"}":{"text\/html":{"en":{"":"has part(s)<\/a>"}},"text\/plain":{"en":{"":"has part(s)"}}},"{\"value\":{\"entity-type\":\"item\",\"numeric-id\":17278,\"id\":\"Q17278\"},\"type\":\"wikibase-entityid\"}":{"text\/html":{"en":{"P527":"circle<\/a>","P180":"circle<\/a>"}},"text\/plain":{"en":{"P527":"circle","P180":"circle"}}},"{\"value\":{\"amount\":\"+3\",\"unit\":\"1\"},\"type\":\"quantity\"}":{"text\/html":{"en":{"P1114":"3"}},"text\/plain":{"en":{"P1114":"3"}}}}" class="wbmi-entityview-statementsGroup wbmi-entityview-statementsGroup-P180 oo-ui-layout oo-ui-panelLayout oo-ui-panelLayout-framed">
inception<\/a>"}},"text\/plain":{"en":{"":"inception"}}},"{\"value\":{\"time\":\"+2009年01月01日T00:00:00Z\",\"timezone\":0,\"before\":0,\"after\":0,\"precision\":9,\"calendarmodel\":\"http:\\\/\\\/www.wikidata.org\\\/entity\\\/Q1985727\"},\"type\":\"time\"}":{"text\/html":{"en":{"P571":"2009"}},"text\/plain":{"en":{"P571":"2009"}}}}" class="wbmi-entityview-statementsGroup wbmi-entityview-statementsGroup-P571 oo-ui-layout oo-ui-panelLayout oo-ui-panelLayout-framed">
instance of<\/a>"}},"text\/plain":{"en":{"":"instance of"}}},"{\"value\":{\"entity-type\":\"item\",\"numeric-id\":815741,\"id\":\"Q815741\"},\"type\":\"wikibase-entityid\"}":{"text\/html":{"en":{"P31":"geometric shape<\/a>"}},"text\/plain":{"en":{"P31":"geometric shape"}}}}" class="wbmi-entityview-statementsGroup wbmi-entityview-statementsGroup-P31 oo-ui-layout oo-ui-panelLayout oo-ui-panelLayout-framed">
media type<\/a>"}},"text\/plain":{"en":{"":"media type"}}},"{\"value\":\"image\\\/svg+xml\",\"type\":\"string\"}":{"text\/html":{"en":{"P1163":"image\/svg+xml"}},"text\/plain":{"en":{"P1163":"image\/svg+xml"}}}}" class="wbmi-entityview-statementsGroup wbmi-entityview-statementsGroup-P1163 oo-ui-layout oo-ui-panelLayout oo-ui-panelLayout-framed">

image/svg+xml

checksum<\/a>"}},"text\/plain":{"en":{"":"checksum"}}},"{\"value\":\"a8767dac234d55721735e7ec6d4784d3d0b1008b\",\"type\":\"string\"}":{"text\/html":{"en":{"P4092":"a8767dac234d55721735e7ec6d4784d3d0b1008b"}},"text\/plain":{"en":{"P4092":"a8767dac234d55721735e7ec6d4784d3d0b1008b"}}},"{\"value\":{\"entity-type\":\"property\",\"numeric-id\":459,\"id\":\"P459\"},\"type\":\"wikibase-entityid\"}":{"text\/html":{"en":{"":"determination method or standard<\/a>"}},"text\/plain":{"en":{"":"determination method or standard"}}},"{\"value\":{\"entity-type\":\"item\",\"numeric-id\":13414952,\"id\":\"Q13414952\"},\"type\":\"wikibase-entityid\"}":{"text\/html":{"en":{"P459":"SHA-1<\/a>"}},"text\/plain":{"en":{"P459":"SHA-1"}}}}" class="wbmi-entityview-statementsGroup wbmi-entityview-statementsGroup-P4092 oo-ui-layout oo-ui-panelLayout oo-ui-panelLayout-framed">

a8767dac234d55721735e7ec6d4784d3d0b1008b

data size<\/a>"}},"text\/plain":{"en":{"":"data size"}}},"{\"value\":{\"amount\":\"+5079\",\"unit\":\"http:\\\/\\\/www.wikidata.org\\\/entity\\\/Q8799\"},\"type\":\"quantity\"}":{"text\/html":{"en":{"P3575":"5,079 byte<\/span>"}},"text\/plain":{"en":{"P3575":"5,079 byte"}}}}" class="wbmi-entityview-statementsGroup wbmi-entityview-statementsGroup-P3575 oo-ui-layout oo-ui-panelLayout oo-ui-panelLayout-framed">

5,079 byte

height<\/a>"}},"text\/plain":{"en":{"":"height"}}},"{\"value\":{\"amount\":\"+600\",\"unit\":\"http:\\\/\\\/www.wikidata.org\\\/entity\\\/Q355198\"},\"type\":\"quantity\"}":{"text\/html":{"en":{"P2048":"600 pixel<\/span>"}},"text\/plain":{"en":{"P2048":"600 pixel"}}}}" class="wbmi-entityview-statementsGroup wbmi-entityview-statementsGroup-P2048 oo-ui-layout oo-ui-panelLayout oo-ui-panelLayout-framed">

600 pixel

width<\/a>"}},"text\/plain":{"en":{"":"width"}}},"{\"value\":{\"amount\":\"+640\",\"unit\":\"http:\\\/\\\/www.wikidata.org\\\/entity\\\/Q355198\"},\"type\":\"quantity\"}":{"text\/html":{"en":{"P2049":"640 pixel<\/span>"}},"text\/plain":{"en":{"P2049":"640 pixel"}}}}" class="wbmi-entityview-statementsGroup wbmi-entityview-statementsGroup-P2049 oo-ui-layout oo-ui-panelLayout oo-ui-panelLayout-framed">

640 pixel

source of file<\/a>"}},"text\/plain":{"en":{"":"source of file"}}},"{\"value\":{\"entity-type\":\"item\",\"numeric-id\":66458942,\"id\":\"Q66458942\"},\"type\":\"wikibase-entityid\"}":{"text\/html":{"en":{"P7482":"original creation by uploader<\/a>"}},"text\/plain":{"en":{"P7482":"original creation by uploader"}}}}" class="wbmi-entityview-statementsGroup wbmi-entityview-statementsGroup-P7482 oo-ui-layout oo-ui-panelLayout oo-ui-panelLayout-framed">

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current12:16, 3 July 2011 Thumbnail for version as of 12:16, 3 July 2011 640 ×ばつ 600 (5 KB)AnonMoos minor fixes/tweakings
17:43, 17 August 2009 Thumbnail for version as of 17:43, 17 August 2009 640 ×ばつ 600 (5 KB)AnonMoos The en:Borromean rings configuration of knot theory, depicted using same-size circles, without an area enclosed by all three circles. For a depiction with central overlap, see Image:BorromeanRings.svg, etc. Self-made graphic, converted from a

Global file usage

Metadata

This file contains additional information, probably added from the digital camera or scanner used to create or digitize it.

If the file has been modified from its original state, some details may not fully reflect the modified file.

Short titleBorromean Rings (minimal central overlap).

AltStyle によって変換されたページ (->オリジナル) /