Indicator function (convex analysis)
In the field of mathematics known as convex analysis, the indicator function of a set is a convex function that indicates the membership (or non-membership) of a given element in that set. It is similar to the indicator function used in probability, but assigns {\displaystyle +\infty } instead of {\displaystyle 1} to the outside elements.
Each field seems to have its own meaning of an "indicator function", as in complex analysis for instance.
Definition
[edit ]Let {\displaystyle X} be a set, and let {\displaystyle A} be a subset of {\displaystyle X}. The indicator function of {\displaystyle A} is the function [1] [2] [3] [4]
- {\displaystyle \iota _{A}:X\to \mathbb {R} \cup \{+\infty \}}
taking values in the extended real number line defined by
- {\displaystyle \iota _{A}(x):={\begin{cases}0,&x\in A;\\+\infty ,&x\not \in A.\end{cases}}}
Properties
[edit ]This function is convex if and only if the set {\displaystyle A} is convex.[5]
This function is lower-semicontinuous if and only if the set {\displaystyle A} is closed.[4]
For any arbitrary sets {\displaystyle A} and {\displaystyle B}, it is that {\displaystyle \iota _{A}+\iota _{B}=\iota _{A\cap B}}.
For an arbitrary non-empty set its Legendre transform is the support function.[6]
The subgradient of {\displaystyle \iota _{A}(x)} for a set {\displaystyle A} and {\displaystyle x\in A} is the normal cone of that set at {\displaystyle x}.[7]
Its infimal convolution with the Euclidean norm {\displaystyle ||\cdot ||_{2}} is the Euclidean distance to that set.[8]
References
[edit ]- ^ R. T. Rockafellar, Convex Analysis, Princeton University Press, (1997) [1970], p.28.
- ^ J. B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Optimization I, Springer-Verlag, 1993, p.152.
- ^ S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, (2009) [2004], p.68.
- ^ a b H. H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer (2017) [2011], p.12.
- ^ H. H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer (2017) [2011], p.139.
- ^ J. B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Optimization II, Springer-Verlag, 1993, p.39.
- ^ H. H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer (2017) [2011], p.267.
- ^ J. B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Optimization II, Springer-Verlag, 1993, p.65.
Bibliography
[edit ]- Rockafellar, R. T. (1997) [1970]. Convex Analysis. Princeton, NJ: Princeton University Press. ISBN 978-0-691-01586-6.
- Hiriart-Urruty, J. B.; Lemaréchal, C. (1993). Convex Analysis and Minimization Algorithms I & II. Springer-Verlag.
- Boyd, S. P.; Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.
- Bauschke, H. H.; Combettes, P. L. (2011). Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer.