Jump to content
Wikipedia The Free Encyclopedia

Indicator function (convex analysis)

From Wikipedia, the free encyclopedia

In the field of mathematics known as convex analysis, the indicator function of a set is a convex function that indicates the membership (or non-membership) of a given element in that set. It is similar to the indicator function used in probability, but assigns + {\displaystyle +\infty } {\displaystyle +\infty } instead of 1 {\displaystyle 1} {\displaystyle 1} to the outside elements.

Each field seems to have its own meaning of an "indicator function", as in complex analysis for instance.

Definition

[edit ]

Let X {\displaystyle X} {\displaystyle X} be a set, and let A {\displaystyle A} {\displaystyle A} be a subset of X {\displaystyle X} {\displaystyle X}. The indicator function of A {\displaystyle A} {\displaystyle A} is the function [1] [2] [3] [4]

ι A : X R { + } {\displaystyle \iota _{A}:X\to \mathbb {R} \cup \{+\infty \}} {\displaystyle \iota _{A}:X\to \mathbb {R} \cup \{+\infty \}}

taking values in the extended real number line defined by

ι A ( x ) := { 0 , x A ; + , x A . {\displaystyle \iota _{A}(x):={\begin{cases}0,&x\in A;\\+\infty ,&x\not \in A.\end{cases}}} {\displaystyle \iota _{A}(x):={\begin{cases}0,&x\in A;\\+\infty ,&x\not \in A.\end{cases}}}

Properties

[edit ]

This function is convex if and only if the set A {\displaystyle A} {\displaystyle A} is convex.[5]

This function is lower-semicontinuous if and only if the set A {\displaystyle A} {\displaystyle A} is closed.[4]

For any arbitrary sets A {\displaystyle A} {\displaystyle A} and B {\displaystyle B} {\displaystyle B}, it is that ι A + ι B = ι A B {\displaystyle \iota _{A}+\iota _{B}=\iota _{A\cap B}} {\displaystyle \iota _{A}+\iota _{B}=\iota _{A\cap B}}.

For an arbitrary non-empty set its Legendre transform is the support function.[6]

The subgradient of ι A ( x ) {\displaystyle \iota _{A}(x)} {\displaystyle \iota _{A}(x)} for a set A {\displaystyle A} {\displaystyle A} and x A {\displaystyle x\in A} {\displaystyle x\in A} is the normal cone of that set at x {\displaystyle x} {\displaystyle x}.[7]

Its infimal convolution with the Euclidean norm | | | | 2 {\displaystyle ||\cdot ||_{2}} {\displaystyle ||\cdot ||_{2}} is the Euclidean distance to that set.[8]

References

[edit ]
  1. ^ R. T. Rockafellar, Convex Analysis, Princeton University Press, (1997) [1970], p.28.
  2. ^ J. B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Optimization I, Springer-Verlag, 1993, p.152.
  3. ^ S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, (2009) [2004], p.68.
  4. ^ a b H. H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer (2017) [2011], p.12.
  5. ^ H. H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer (2017) [2011], p.139.
  6. ^ J. B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Optimization II, Springer-Verlag, 1993, p.39.
  7. ^ H. H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer (2017) [2011], p.267.
  8. ^ J. B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Optimization II, Springer-Verlag, 1993, p.65.

Bibliography

[edit ]
  • Rockafellar, R. T. (1997) [1970]. Convex Analysis. Princeton, NJ: Princeton University Press. ISBN 978-0-691-01586-6.
  • Hiriart-Urruty, J. B.; Lemaréchal, C. (1993). Convex Analysis and Minimization Algorithms I & II. Springer-Verlag.
  • Boyd, S. P.; Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.
  • Bauschke, H. H.; Combettes, P. L. (2011). Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer.

AltStyle によって変換されたページ (->オリジナル) /