Jump to content
Wikipedia The Free Encyclopedia

Sum of squares function

From Wikipedia, the free encyclopedia
Number-theoretical function

In number theory, the sum of squares function is an arithmetic function that gives the number of representations for a given positive integer n as the sum of k squares, where representations that differ only in the order of the summands or in the signs of the numbers being squared are counted as different. It is denoted by rk(n).

Definition

[edit ]

The function is defined as

r k ( n ) = | { ( a 1 , a 2 , , a k ) Z k   :   n = a 1 2 + a 2 2 + + a k 2 } | {\displaystyle r_{k}(n)=|\{(a_{1},a_{2},\ldots ,a_{k})\in \mathbb {Z} ^{k}\ :\ n=a_{1}^{2}+a_{2}^{2}+\cdots +a_{k}^{2}\}|} {\displaystyle r_{k}(n)=|\{(a_{1},a_{2},\ldots ,a_{k})\in \mathbb {Z} ^{k}\ :\ n=a_{1}^{2}+a_{2}^{2}+\cdots +a_{k}^{2}\}|}

where |   | {\displaystyle |,円\ |} {\displaystyle |,円\ |} denotes the cardinality of a set. In other words, rk(n) is the number of ways n can be written as a sum of k squares.

For example, r 2 ( 1 ) = 4 {\displaystyle r_{2}(1)=4} {\displaystyle r_{2}(1)=4} since 1 = 0 2 + ( ± 1 ) 2 = ( ± 1 ) 2 + 0 2 {\displaystyle 1=0^{2}+(\pm 1)^{2}=(\pm 1)^{2}+0^{2}} {\displaystyle 1=0^{2}+(\pm 1)^{2}=(\pm 1)^{2}+0^{2}} where each sum has two sign combinations, and also r 2 ( 2 ) = 4 {\displaystyle r_{2}(2)=4} {\displaystyle r_{2}(2)=4} since 2 = ( ± 1 ) 2 + ( ± 1 ) 2 {\displaystyle 2=(\pm 1)^{2}+(\pm 1)^{2}} {\displaystyle 2=(\pm 1)^{2}+(\pm 1)^{2}} with four sign combinations. On the other hand, r 2 ( 3 ) = 0 {\displaystyle r_{2}(3)=0} {\displaystyle r_{2}(3)=0} because there is no way to represent 3 as a sum of two squares.

Formulae

[edit ]

k = 2

[edit ]
Integers satisfying the sum of two squares theorem are squares of possible distances between integer lattice points; values up to 100 are shown, with
• Squares (and thus integer distances) in red
• Non-unique representations (up to rotation and reflection) bolded

The number of ways to write a natural number as sum of two squares is given by r2(n). It is given explicitly by

r 2 ( n ) = 4 ( d 1 ( n ) d 3 ( n ) ) {\displaystyle r_{2}(n)=4(d_{1}(n)-d_{3}(n))} {\displaystyle r_{2}(n)=4(d_{1}(n)-d_{3}(n))}

where d1(n) is the number of divisors of n which are congruent to 1 modulo 4 and d3(n) is the number of divisors of n which are congruent to 3 modulo 4. Using sums, the expression can be written as:

r 2 ( n ) = 4 d n d 1 , 3 ( mod 4 ) ( 1 ) ( d 1 ) / 2 {\displaystyle r_{2}(n)=4\sum _{d\mid n \atop d,円\equiv ,1,3円{\pmod {4}}}(-1)^{(d-1)/2}} {\displaystyle r_{2}(n)=4\sum _{d\mid n \atop d,円\equiv ,1,3円{\pmod {4}}}(-1)^{(d-1)/2}}

The prime factorization n = 2 g p 1 f 1 p 2 f 2 q 1 h 1 q 2 h 2 {\displaystyle n=2^{g}p_{1}^{f_{1}}p_{2}^{f_{2}}\cdots q_{1}^{h_{1}}q_{2}^{h_{2}}\cdots } {\displaystyle n=2^{g}p_{1}^{f_{1}}p_{2}^{f_{2}}\cdots q_{1}^{h_{1}}q_{2}^{h_{2}}\cdots }, where p i {\displaystyle p_{i}} {\displaystyle p_{i}} are the prime factors of the form p i 1 ( mod 4 ) , {\displaystyle p_{i}\equiv 1{\pmod {4}},} {\displaystyle p_{i}\equiv 1{\pmod {4}},} and q i {\displaystyle q_{i}} {\displaystyle q_{i}} are the prime factors of the form q i 3 ( mod 4 ) {\displaystyle q_{i}\equiv 3{\pmod {4}}} {\displaystyle q_{i}\equiv 3{\pmod {4}}} gives another formula

r 2 ( n ) = 4 ( f 1 + 1 ) ( f 2 + 1 ) {\displaystyle r_{2}(n)=4(f_{1}+1)(f_{2}+1)\cdots } {\displaystyle r_{2}(n)=4(f_{1}+1)(f_{2}+1)\cdots }, if all exponents h 1 , h 2 , {\displaystyle h_{1},h_{2},\cdots } {\displaystyle h_{1},h_{2},\cdots } are even. If one or more h i {\displaystyle h_{i}} {\displaystyle h_{i}} are odd, then r 2 ( n ) = 0 {\displaystyle r_{2}(n)=0} {\displaystyle r_{2}(n)=0}.

k = 3

[edit ]

Gauss proved that for a squarefree number n > 4,

r 3 ( n ) = { 24 h ( n ) , if  n 3 ( mod 8 ) , 0 if  n 7 ( mod 8 ) , 12 h ( 4 n ) otherwise , {\displaystyle r_{3}(n)={\begin{cases}24h(-n),&{\text{if }}n\equiv 3{\pmod {8}},\0円&{\text{if }}n\equiv 7{\pmod {8}},\12円h(-4n)&{\text{otherwise}},\end{cases}}} {\displaystyle r_{3}(n)={\begin{cases}24h(-n),&{\text{if }}n\equiv 3{\pmod {8}},\0円&{\text{if }}n\equiv 7{\pmod {8}},\12円h(-4n)&{\text{otherwise}},\end{cases}}}

where h(m) denotes the class number of an integer m.

There exist extensions of Gauss' formula to arbitrary integer n.[1] [2]

k = 4

[edit ]

The number of ways to represent n as the sum of four squares was due to Carl Gustav Jakob Jacobi and it is eight times the sum of all its divisors which are not divisible by 4, i.e.

r 4 ( n ) = 8 d n ,   4 d d . {\displaystyle r_{4}(n)=8\sum _{d,円\mid ,円n,\ 4,円\nmid ,円d}d.} {\displaystyle r_{4}(n)=8\sum _{d,円\mid ,円n,\ 4,円\nmid ,円d}d.}

Representing n = 2km, where m is an odd integer, one can express r 4 ( n ) {\displaystyle r_{4}(n)} {\displaystyle r_{4}(n)} in terms of the divisor function as follows:

r 4 ( n ) = 8 σ ( 2 min { k , 1 } m ) . {\displaystyle r_{4}(n)=8\sigma (2^{\min\{k,1\}}m).} {\displaystyle r_{4}(n)=8\sigma (2^{\min\{k,1\}}m).}

k = 6

[edit ]

The number of ways to represent n as the sum of six squares is given by

r 6 ( n ) = 4 d n d 2 ( 4 ( 4 n / d ) ( 4 d ) ) , {\displaystyle r_{6}(n)=4\sum _{d\mid n}d^{2}{\big (}4\left({\tfrac {-4}{n/d}}\right)-\left({\tfrac {-4}{d}}\right){\big )},} {\displaystyle r_{6}(n)=4\sum _{d\mid n}d^{2}{\big (}4\left({\tfrac {-4}{n/d}}\right)-\left({\tfrac {-4}{d}}\right){\big )},}

where ( ) {\displaystyle \left({\tfrac {\cdot }{\cdot }}\right)} {\displaystyle \left({\tfrac {\cdot }{\cdot }}\right)} is the Kronecker symbol.[3]

k = 8

[edit ]

Jacobi also found an explicit formula for the case k = 8:[3]

r 8 ( n ) = 16 d n ( 1 ) n + d d 3 . {\displaystyle r_{8}(n)=16\sum _{d,円\mid ,円n}(-1)^{n+d}d^{3}.} {\displaystyle r_{8}(n)=16\sum _{d,円\mid ,円n}(-1)^{n+d}d^{3}.}

Generating function

[edit ]

The generating function of the sequence r k ( n ) {\displaystyle r_{k}(n)} {\displaystyle r_{k}(n)} for fixed k can be expressed in terms of the Jacobi theta function:[4]

ϑ ( 0 ; q ) k = ϑ 3 k ( q ) = n = 0 r k ( n ) q n , {\displaystyle \vartheta (0;q)^{k}=\vartheta _{3}^{k}(q)=\sum _{n=0}^{\infty }r_{k}(n)q^{n},} {\displaystyle \vartheta (0;q)^{k}=\vartheta _{3}^{k}(q)=\sum _{n=0}^{\infty }r_{k}(n)q^{n},}

where

ϑ ( 0 ; q ) = n = q n 2 = 1 + 2 q + 2 q 4 + 2 q 9 + 2 q 16 + . {\displaystyle \vartheta (0;q)=\sum _{n=-\infty }^{\infty }q^{n^{2}}=1+2q+2q^{4}+2q^{9}+2q^{16}+\cdots .} {\displaystyle \vartheta (0;q)=\sum _{n=-\infty }^{\infty }q^{n^{2}}=1+2q+2q^{4}+2q^{9}+2q^{16}+\cdots .}

Numerical values

[edit ]

The first 30 values for r k ( n ) , k = 1 , , 8 {\displaystyle r_{k}(n),\;k=1,\dots ,8} {\displaystyle r_{k}(n),\;k=1,\dots ,8} are listed in the table below:

n = r1(n) r2(n) r3(n) r4(n) r5(n) r6(n) r7(n) r8(n)
0 0 1 1 1 1 1 1 1 1
1 1 2 4 6 8 10 12 14 16
2 2 0 4 12 24 40 60 84 112
3 3 0 0 8 32 80 160 280 448
4 22 2 4 6 24 90 252 574 1136
5 5 0 8 24 48 112 312 840 2016
6 ×ばつ3 0 0 24 96 240 544 1288 3136
7 7 0 0 0 64 320 960 2368 5504
8 23 0 4 12 24 200 1020 3444 9328
9 32 2 4 30 104 250 876 3542 12112
10 ×ばつ5 0 8 24 144 560 1560 4424 14112
11 11 0 0 24 96 560 2400 7560 21312
12 22×ばつ3 0 0 8 96 400 2080 9240 31808
13 13 0 8 24 112 560 2040 8456 35168
14 ×ばつ7 0 0 48 192 800 3264 11088 38528
15 ×ばつ5 0 0 0 192 960 4160 16576 56448
16 24 2 4 6 24 730 4092 18494 74864
17 17 0 8 48 144 480 3480 17808 78624
18 ×ばつ32 0 4 36 312 1240 4380 19740 84784
19 19 0 0 24 160 1520 7200 27720 109760
20 22×ばつ5 0 8 24 144 752 6552 34440 143136
21 ×ばつ7 0 0 48 256 1120 4608 29456 154112
22 ×ばつ11 0 0 24 288 1840 8160 31304 149184
23 23 0 0 0 192 1600 10560 49728 194688
24 23×ばつ3 0 0 24 96 1200 8224 52808 261184
25 52 2 12 30 248 1210 7812 43414 252016
26 ×ばつ13 0 8 72 336 2000 10200 52248 246176
27 33 0 0 32 320 2240 13120 68320 327040
28 22×ばつ7 0 0 0 192 1600 12480 74048 390784
29 29 0 8 72 240 1680 10104 68376 390240
30 ×ばつ5 0 0 48 576 2720 14144 71120 395136

See also

[edit ]

References

[edit ]
  1. ^ P. T. Bateman (1951). "On the Representation of a Number as the Sum of Three Squares" (PDF). Trans. Amer. Math. Soc. 71: 70–101. doi:10.1090/S0002-9947-1951-0042438-4.
  2. ^ S. Bhargava; Chandrashekar Adiga; D. D. Somashekara (1993). "Three-Square Theorem as an Application of Andrews' Identity" (PDF). Fibonacci Quart. 31 (2): 129–133. doi:10.1080/00150517.1993.12429300.
  3. ^ a b Cohen, H. (2007). "5.4 Consequences of the Hasse–Minkowski Theorem". Number Theory Volume I: Tools and Diophantine Equations. Springer. ISBN 978-0-387-49922-2.
  4. ^ Milne, Stephen C. (2002). "Introduction". Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions. Springer Science & Business Media. p. 9. ISBN 1402004915.

Further reading

[edit ]

Grosswald, Emil (1985). Representations of integers as sums of squares. Springer-Verlag. ISBN 0387961267.

[edit ]

AltStyle によって変換されたページ (->オリジナル) /