Sum of squares function
In number theory, the sum of squares function is an arithmetic function that gives the number of representations for a given positive integer n as the sum of k squares, where representations that differ only in the order of the summands or in the signs of the numbers being squared are counted as different. It is denoted by rk(n).
Definition
[edit ]The function is defined as
- {\displaystyle r_{k}(n)=|\{(a_{1},a_{2},\ldots ,a_{k})\in \mathbb {Z} ^{k}\ :\ n=a_{1}^{2}+a_{2}^{2}+\cdots +a_{k}^{2}\}|}
where {\displaystyle |,円\ |} denotes the cardinality of a set. In other words, rk(n) is the number of ways n can be written as a sum of k squares.
For example, {\displaystyle r_{2}(1)=4} since {\displaystyle 1=0^{2}+(\pm 1)^{2}=(\pm 1)^{2}+0^{2}} where each sum has two sign combinations, and also {\displaystyle r_{2}(2)=4} since {\displaystyle 2=(\pm 1)^{2}+(\pm 1)^{2}} with four sign combinations. On the other hand, {\displaystyle r_{2}(3)=0} because there is no way to represent 3 as a sum of two squares.
Formulae
[edit ]k = 2
[edit ]The number of ways to write a natural number as sum of two squares is given by r2(n). It is given explicitly by
- {\displaystyle r_{2}(n)=4(d_{1}(n)-d_{3}(n))}
where d1(n) is the number of divisors of n which are congruent to 1 modulo 4 and d3(n) is the number of divisors of n which are congruent to 3 modulo 4. Using sums, the expression can be written as:
- {\displaystyle r_{2}(n)=4\sum _{d\mid n \atop d,円\equiv ,1,3円{\pmod {4}}}(-1)^{(d-1)/2}}
The prime factorization {\displaystyle n=2^{g}p_{1}^{f_{1}}p_{2}^{f_{2}}\cdots q_{1}^{h_{1}}q_{2}^{h_{2}}\cdots }, where {\displaystyle p_{i}} are the prime factors of the form {\displaystyle p_{i}\equiv 1{\pmod {4}},} and {\displaystyle q_{i}} are the prime factors of the form {\displaystyle q_{i}\equiv 3{\pmod {4}}} gives another formula
- {\displaystyle r_{2}(n)=4(f_{1}+1)(f_{2}+1)\cdots }, if all exponents {\displaystyle h_{1},h_{2},\cdots } are even. If one or more {\displaystyle h_{i}} are odd, then {\displaystyle r_{2}(n)=0}.
k = 3
[edit ]Gauss proved that for a squarefree number n > 4,
- {\displaystyle r_{3}(n)={\begin{cases}24h(-n),&{\text{if }}n\equiv 3{\pmod {8}},\0円&{\text{if }}n\equiv 7{\pmod {8}},\12円h(-4n)&{\text{otherwise}},\end{cases}}}
where h(m) denotes the class number of an integer m.
There exist extensions of Gauss' formula to arbitrary integer n.[1] [2]
k = 4
[edit ]The number of ways to represent n as the sum of four squares was due to Carl Gustav Jakob Jacobi and it is eight times the sum of all its divisors which are not divisible by 4, i.e.
- {\displaystyle r_{4}(n)=8\sum _{d,円\mid ,円n,\ 4,円\nmid ,円d}d.}
Representing n = 2km, where m is an odd integer, one can express {\displaystyle r_{4}(n)} in terms of the divisor function as follows:
- {\displaystyle r_{4}(n)=8\sigma (2^{\min\{k,1\}}m).}
k = 6
[edit ]The number of ways to represent n as the sum of six squares is given by
- {\displaystyle r_{6}(n)=4\sum _{d\mid n}d^{2}{\big (}4\left({\tfrac {-4}{n/d}}\right)-\left({\tfrac {-4}{d}}\right){\big )},}
where {\displaystyle \left({\tfrac {\cdot }{\cdot }}\right)} is the Kronecker symbol.[3]
k = 8
[edit ]Jacobi also found an explicit formula for the case k = 8:[3]
- {\displaystyle r_{8}(n)=16\sum _{d,円\mid ,円n}(-1)^{n+d}d^{3}.}
Generating function
[edit ]The generating function of the sequence {\displaystyle r_{k}(n)} for fixed k can be expressed in terms of the Jacobi theta function:[4]
- {\displaystyle \vartheta (0;q)^{k}=\vartheta _{3}^{k}(q)=\sum _{n=0}^{\infty }r_{k}(n)q^{n},}
where
- {\displaystyle \vartheta (0;q)=\sum _{n=-\infty }^{\infty }q^{n^{2}}=1+2q+2q^{4}+2q^{9}+2q^{16}+\cdots .}
Numerical values
[edit ]The first 30 values for {\displaystyle r_{k}(n),\;k=1,\dots ,8} are listed in the table below:
| n | = | r1(n) | r2(n) | r3(n) | r4(n) | r5(n) | r6(n) | r7(n) | r8(n) |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 |
| 2 | 2 | 0 | 4 | 12 | 24 | 40 | 60 | 84 | 112 |
| 3 | 3 | 0 | 0 | 8 | 32 | 80 | 160 | 280 | 448 |
| 4 | 22 | 2 | 4 | 6 | 24 | 90 | 252 | 574 | 1136 |
| 5 | 5 | 0 | 8 | 24 | 48 | 112 | 312 | 840 | 2016 |
| 6 | ×ばつ3 | 0 | 0 | 24 | 96 | 240 | 544 | 1288 | 3136 |
| 7 | 7 | 0 | 0 | 0 | 64 | 320 | 960 | 2368 | 5504 |
| 8 | 23 | 0 | 4 | 12 | 24 | 200 | 1020 | 3444 | 9328 |
| 9 | 32 | 2 | 4 | 30 | 104 | 250 | 876 | 3542 | 12112 |
| 10 | ×ばつ5 | 0 | 8 | 24 | 144 | 560 | 1560 | 4424 | 14112 |
| 11 | 11 | 0 | 0 | 24 | 96 | 560 | 2400 | 7560 | 21312 |
| 12 | 22×ばつ3 | 0 | 0 | 8 | 96 | 400 | 2080 | 9240 | 31808 |
| 13 | 13 | 0 | 8 | 24 | 112 | 560 | 2040 | 8456 | 35168 |
| 14 | ×ばつ7 | 0 | 0 | 48 | 192 | 800 | 3264 | 11088 | 38528 |
| 15 | ×ばつ5 | 0 | 0 | 0 | 192 | 960 | 4160 | 16576 | 56448 |
| 16 | 24 | 2 | 4 | 6 | 24 | 730 | 4092 | 18494 | 74864 |
| 17 | 17 | 0 | 8 | 48 | 144 | 480 | 3480 | 17808 | 78624 |
| 18 | ×ばつ32 | 0 | 4 | 36 | 312 | 1240 | 4380 | 19740 | 84784 |
| 19 | 19 | 0 | 0 | 24 | 160 | 1520 | 7200 | 27720 | 109760 |
| 20 | 22×ばつ5 | 0 | 8 | 24 | 144 | 752 | 6552 | 34440 | 143136 |
| 21 | ×ばつ7 | 0 | 0 | 48 | 256 | 1120 | 4608 | 29456 | 154112 |
| 22 | ×ばつ11 | 0 | 0 | 24 | 288 | 1840 | 8160 | 31304 | 149184 |
| 23 | 23 | 0 | 0 | 0 | 192 | 1600 | 10560 | 49728 | 194688 |
| 24 | 23×ばつ3 | 0 | 0 | 24 | 96 | 1200 | 8224 | 52808 | 261184 |
| 25 | 52 | 2 | 12 | 30 | 248 | 1210 | 7812 | 43414 | 252016 |
| 26 | ×ばつ13 | 0 | 8 | 72 | 336 | 2000 | 10200 | 52248 | 246176 |
| 27 | 33 | 0 | 0 | 32 | 320 | 2240 | 13120 | 68320 | 327040 |
| 28 | 22×ばつ7 | 0 | 0 | 0 | 192 | 1600 | 12480 | 74048 | 390784 |
| 29 | 29 | 0 | 8 | 72 | 240 | 1680 | 10104 | 68376 | 390240 |
| 30 | ×ばつ5 | 0 | 0 | 48 | 576 | 2720 | 14144 | 71120 | 395136 |
See also
[edit ]References
[edit ]- ^ P. T. Bateman (1951). "On the Representation of a Number as the Sum of Three Squares" (PDF). Trans. Amer. Math. Soc. 71: 70–101. doi:10.1090/S0002-9947-1951-0042438-4.
- ^ S. Bhargava; Chandrashekar Adiga; D. D. Somashekara (1993). "Three-Square Theorem as an Application of Andrews' Identity" (PDF). Fibonacci Quart. 31 (2): 129–133. doi:10.1080/00150517.1993.12429300.
- ^ a b Cohen, H. (2007). "5.4 Consequences of the Hasse–Minkowski Theorem". Number Theory Volume I: Tools and Diophantine Equations. Springer. ISBN 978-0-387-49922-2.
- ^ Milne, Stephen C. (2002). "Introduction". Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions. Springer Science & Business Media. p. 9. ISBN 1402004915.
Further reading
[edit ]Grosswald, Emil (1985). Representations of integers as sums of squares. Springer-Verlag. ISBN 0387961267.
External links
[edit ]- Weisstein, Eric W. "Sum of Squares Function". MathWorld .
- Sloane, N. J. A. (ed.). "Sequence A122141 (number of ways of writing n as a sum of d squares)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
- Sloane, N. J. A. (ed.). "Sequence A004018 (Theta series of square lattice, r_2(n))". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.