Jump to content
Wikipedia The Free Encyclopedia

Modulus of convergence

From Wikipedia, the free encyclopedia
Mathematical term

In real analysis, a branch of mathematics, a modulus of convergence is a function that tells how quickly a convergent sequence converges. These moduli are often employed in the study of computable analysis and constructive mathematics.

If a sequence of real numbers x i {\displaystyle x_{i}} {\displaystyle x_{i}} converges to a real number x {\displaystyle x} {\displaystyle x}, then by definition, for every real ε > 0 {\displaystyle \varepsilon >0} {\displaystyle \varepsilon >0} there is a natural number N {\displaystyle N} {\displaystyle N} such that if i > N {\displaystyle i>N} {\displaystyle i>N} then | x x i | < ε {\displaystyle \left|x-x_{i}\right|<\varepsilon } {\displaystyle \left|x-x_{i}\right|<\varepsilon }. A modulus of convergence is essentially a function that, given ε {\displaystyle \varepsilon } {\displaystyle \varepsilon }, returns a corresponding value of N {\displaystyle N} {\displaystyle N}.

Examples

[edit ]

Suppose that x i {\displaystyle x_{i}} {\displaystyle x_{i}} is a convergent sequence of real numbers with limit x {\displaystyle x} {\displaystyle x}. There are two common ways of defining a modulus of convergence as a function from natural numbers to natural numbers:

  • As a function f {\displaystyle f} {\displaystyle f} such that for all n {\displaystyle n} {\displaystyle n}, if i > f ( n ) {\displaystyle i>f(n)} {\displaystyle i>f(n)} then | x x i | < 1 / n {\displaystyle \left|x-x_{i}\right|<1/n} {\displaystyle \left|x-x_{i}\right|<1/n}.
  • As a function g {\displaystyle g} {\displaystyle g} such that for all n {\displaystyle n} {\displaystyle n}, if i j > g ( n ) {\displaystyle i\geq j>g(n)} {\displaystyle i\geq j>g(n)} then | x i x j | < 1 / n {\displaystyle \left|x_{i}-x_{j}\right|<1/n} {\displaystyle \left|x_{i}-x_{j}\right|<1/n}.

The latter definition is often employed in constructive settings, where the limit x {\displaystyle x} {\displaystyle x} may actually be identified with the convergent sequence. Some authors use an alternate definition that replaces 1 / n {\displaystyle 1/n} {\displaystyle 1/n} with 2 n {\displaystyle 2^{-n}} {\displaystyle 2^{-n}}.

See also

[edit ]

References

[edit ]
  • Klaus Weihrauch (2000), Computable Analysis.

AltStyle によって変換されたページ (->オリジナル) /