Jump to content
Wikipedia The Free Encyclopedia

Mixed complementarity problem

From Wikipedia, the free encyclopedia
Formulation in mathematical programming

Mixed Complementarity Problem (MCP) is a problem formulation in mathematical programming. Many well-known problem types are special cases of, or may be reduced to MCP. It is a generalization of nonlinear complementarity problem (NCP).

Definition

[edit ]

The mixed complementarity problem is defined by a mapping F ( x ) : R n R n {\displaystyle F(x):\mathbb {R} ^{n}\to \mathbb {R} ^{n}} {\displaystyle F(x):\mathbb {R} ^{n}\to \mathbb {R} ^{n}}, lower values i R { } {\displaystyle \ell _{i}\in \mathbb {R} \cup \{-\infty \}} {\displaystyle \ell _{i}\in \mathbb {R} \cup \{-\infty \}} and upper values u i R { } {\displaystyle u_{i}\in \mathbb {R} \cup \{\infty \}} {\displaystyle u_{i}\in \mathbb {R} \cup \{\infty \}}, with i { 1 , , n } {\displaystyle i\in \{1,\ldots ,n\}} {\displaystyle i\in \{1,\ldots ,n\}}.

The solution of the MCP is a vector x R n {\displaystyle x\in \mathbb {R} ^{n}} {\displaystyle x\in \mathbb {R} ^{n}} such that for each index i { 1 , , n } {\displaystyle i\in \{1,\ldots ,n\}} {\displaystyle i\in \{1,\ldots ,n\}} one of the following alternatives holds:

  • x i = i , F i ( x ) 0 {\displaystyle x_{i}=\ell _{i},\;F_{i}(x)\geq 0} {\displaystyle x_{i}=\ell _{i},\;F_{i}(x)\geq 0};
  • i < x i < u i , F i ( x ) = 0 {\displaystyle \ell _{i}<x_{i}<u_{i},\;F_{i}(x)=0} {\displaystyle \ell _{i}<x_{i}<u_{i},\;F_{i}(x)=0};
  • x i = u i , F i ( x ) 0 {\displaystyle x_{i}=u_{i},\;F_{i}(x)\leq 0} {\displaystyle x_{i}=u_{i},\;F_{i}(x)\leq 0}.

Another definition for MCP is: it is a variational inequality on the parallelepiped [ , u ] {\displaystyle [\ell ,u]} {\displaystyle [\ell ,u]}.

See also

[edit ]

References

[edit ]

AltStyle によって変換されたページ (->オリジナル) /