Jump to content
Wikipedia The Free Encyclopedia

Plummer model

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Mathematical model in astronomical systems

The Plummer model or Plummer sphere is a density law that was first used by H. C. Plummer to fit observations of globular clusters.[1] It is now often used as toy model in N-body simulations of stellar systems.

Description of the model

The density law of a Plummer model

The Plummer 3-dimensional density profile is given by ρ P ( r ) = 3 M 0 4 π a 3 ( 1 + r 2 a 2 ) 5 / 2 = 3 M 0 a 2 4 π ( a 2 + r 2 ) 5 / 2 , {\displaystyle \rho _{P}(r)={\frac {3M_{0}}{4\pi a^{3}}}\left(1+{\frac {r^{2}}{a^{2}}}\right)^{-{5}/{2}}={\frac {3M_{0}a^{2}}{4\pi (a^{2}+r^{2})^{{5}/{2}}}},} {\displaystyle \rho _{P}(r)={\frac {3M_{0}}{4\pi a^{3}}}\left(1+{\frac {r^{2}}{a^{2}}}\right)^{-{5}/{2}}={\frac {3M_{0}a^{2}}{4\pi (a^{2}+r^{2})^{{5}/{2}}}},} where M 0 {\displaystyle M_{0}} {\displaystyle M_{0}} is the total mass of the cluster, and a is the Plummer radius, a scale parameter that sets the size of the cluster core. The corresponding potential is Φ P ( r ) = G M 0 r 2 + a 2 , {\displaystyle \Phi _{P}(r)=-{\frac {GM_{0}}{\sqrt {r^{2}+a^{2}}}},} {\displaystyle \Phi _{P}(r)=-{\frac {GM_{0}}{\sqrt {r^{2}+a^{2}}}},} where G is Newton's gravitational constant. The velocity dispersion is σ P 2 ( r ) = G M 0 6 r 2 + a 2 . {\displaystyle \sigma _{P}^{2}(r)={\frac {GM_{0}}{6{\sqrt {r^{2}+a^{2}}}}}.} {\displaystyle \sigma _{P}^{2}(r)={\frac {GM_{0}}{6{\sqrt {r^{2}+a^{2}}}}}.}

The isotropic distribution function reads f ( x , v ) = 24 2 7 π 3 a 2 G 5 M 0 4 ( E ( x , v ) ) 7 / 2 , {\displaystyle f({\vec {x}},{\vec {v}})={\frac {24{\sqrt {2}}}{7\pi ^{3}}}{\frac {a^{2}}{G^{5}M_{0}^{4}}}(-E({\vec {x}},{\vec {v}}))^{7/2},} {\displaystyle f({\vec {x}},{\vec {v}})={\frac {24{\sqrt {2}}}{7\pi ^{3}}}{\frac {a^{2}}{G^{5}M_{0}^{4}}}(-E({\vec {x}},{\vec {v}}))^{7/2},} if E < 0 {\displaystyle E<0} {\displaystyle E<0}, and f ( x , v ) = 0 {\displaystyle f({\vec {x}},{\vec {v}})=0} {\displaystyle f({\vec {x}},{\vec {v}})=0} otherwise, where E ( x , v ) = 1 2 v 2 + Φ P ( r ) {\textstyle E({\vec {x}},{\vec {v}})={\frac {1}{2}}v^{2}+\Phi _{P}(r)} {\textstyle E({\vec {x}},{\vec {v}})={\frac {1}{2}}v^{2}+\Phi _{P}(r)} is the specific energy.

Properties

The mass enclosed within radius r {\displaystyle r} {\displaystyle r} is given by M ( < r ) = 4 π 0 r r 2 ρ P ( r ) d r = M 0 r 3 ( r 2 + a 2 ) 3 / 2 . {\displaystyle M(<r)=4\pi \int _{0}^{r}r'^{2}\rho _{P}(r'),円dr'=M_{0}{\frac {r^{3}}{(r^{2}+a^{2})^{3/2}}}.} {\displaystyle M(<r)=4\pi \int _{0}^{r}r'^{2}\rho _{P}(r'),円dr'=M_{0}{\frac {r^{3}}{(r^{2}+a^{2})^{3/2}}}.}

Many other properties of the Plummer model are described in Herwig Dejonghe's comprehensive article.[2]

Core radius r c {\displaystyle r_{c}} {\displaystyle r_{c}}, where the surface density drops to half its central value, is at r c = a 2 1 0.64 a {\textstyle r_{c}=a{\sqrt {{\sqrt {2}}-1}}\approx 0.64a} {\textstyle r_{c}=a{\sqrt {{\sqrt {2}}-1}}\approx 0.64a}.[3]

Half-mass radius is r h = ( 1 0.5 2 / 3 1 ) 0.5 a 1.3 a . {\displaystyle r_{h}=\left({\frac {1}{0.5^{2/3}}}-1\right)^{-0.5}a\approx 1.3a.} {\displaystyle r_{h}=\left({\frac {1}{0.5^{2/3}}}-1\right)^{-0.5}a\approx 1.3a.}

Virial radius is r V = 16 3 π a 1.7 a {\displaystyle r_{V}={\frac {16}{3\pi }}a\approx 1.7a} {\displaystyle r_{V}={\frac {16}{3\pi }}a\approx 1.7a}.

The 2D surface density is: Σ ( R ) = ρ ( r ( z ) ) d z = 2 0 3 a 2 M 0 d z 4 π ( a 2 + z 2 + R 2 ) 5 / 2 = M 0 a 2 π ( a 2 + R 2 ) 2 , {\displaystyle \Sigma (R)=\int _{-\infty }^{\infty }\rho (r(z))dz=2\int _{0}^{\infty }{\frac {3a^{2}M_{0}dz}{4\pi (a^{2}+z^{2}+R^{2})^{5/2}}}={\frac {M_{0}a^{2}}{\pi (a^{2}+R^{2})^{2}}},} {\displaystyle \Sigma (R)=\int _{-\infty }^{\infty }\rho (r(z))dz=2\int _{0}^{\infty }{\frac {3a^{2}M_{0}dz}{4\pi (a^{2}+z^{2}+R^{2})^{5/2}}}={\frac {M_{0}a^{2}}{\pi (a^{2}+R^{2})^{2}}},} and hence the 2D projected mass profile is: M ( R ) = 2 π 0 R Σ ( R ) R d R = M 0 R 2 a 2 + R 2 . {\displaystyle M(R)=2\pi \int _{0}^{R}\Sigma (R'),円R'dR'=M_{0}{\frac {R^{2}}{a^{2}+R^{2}}}.} {\displaystyle M(R)=2\pi \int _{0}^{R}\Sigma (R'),円R'dR'=M_{0}{\frac {R^{2}}{a^{2}+R^{2}}}.}

In astronomy, it is convenient to define 2D half-mass radius which is the radius where the 2D projected mass profile is half of the total mass: M ( R 1 / 2 ) = M 0 / 2 {\displaystyle M(R_{1/2})=M_{0}/2} {\displaystyle M(R_{1/2})=M_{0}/2}.

For the Plummer profile: R 1 / 2 = a {\displaystyle R_{1/2}=a} {\displaystyle R_{1/2}=a}.

The escape velocity at any point is v e s c ( r ) = 2 Φ ( r ) = 12 σ ( r ) , {\displaystyle v_{\rm {esc}}(r)={\sqrt {-2\Phi (r)}}={\sqrt {12}},円\sigma (r),} {\displaystyle v_{\rm {esc}}(r)={\sqrt {-2\Phi (r)}}={\sqrt {12}},円\sigma (r),}

For bound orbits, the radial turning points of the orbit is characterized by specific energy E = 1 2 v 2 + Φ ( r ) {\textstyle E={\frac {1}{2}}v^{2}+\Phi (r)} {\textstyle E={\frac {1}{2}}v^{2}+\Phi (r)} and specific angular momentum L = | r × v | {\displaystyle L=|{\vec {r}}\times {\vec {v}}|} {\displaystyle L=|{\vec {r}}\times {\vec {v}}|} are given by the positive roots of the cubic equation R 3 + G M 0 E R 2 ( L 2 2 E + a 2 ) R G M 0 a 2 E = 0 , {\displaystyle R^{3}+{\frac {GM_{0}}{E}}R^{2}-\left({\frac {L^{2}}{2E}}+a^{2}\right)R-{\frac {GM_{0}a^{2}}{E}}=0,} {\displaystyle R^{3}+{\frac {GM_{0}}{E}}R^{2}-\left({\frac {L^{2}}{2E}}+a^{2}\right)R-{\frac {GM_{0}a^{2}}{E}}=0,} where R = r 2 + a 2 {\displaystyle R={\sqrt {r^{2}+a^{2}}}} {\displaystyle R={\sqrt {r^{2}+a^{2}}}}, so that r = R 2 a 2 {\displaystyle r={\sqrt {R^{2}-a^{2}}}} {\displaystyle r={\sqrt {R^{2}-a^{2}}}}. This equation has three real roots for R {\displaystyle R} {\displaystyle R}: two positive and one negative, given that L < L c ( E ) {\displaystyle L<L_{c}(E)} {\displaystyle L<L_{c}(E)}, where L c ( E ) {\displaystyle L_{c}(E)} {\displaystyle L_{c}(E)} is the specific angular momentum for a circular orbit for the same energy. Here L c {\displaystyle L_{c}} {\displaystyle L_{c}} can be calculated from single real root of the discriminant of the cubic equation, which is itself another cubic equation E _ L _ c 3 + ( 6 E _ 2 a _ 2 + 1 2 ) L _ c 2 + ( 12 E _ 3 a _ 4 + 20 E _ a _ 2 ) L _ c + ( 8 E _ 4 a _ 6 16 E _ 2 a _ 4 + 8 a _ 2 ) = 0 , {\displaystyle {\underline {E}},円{\underline {L}}_{c}^{3}+\left(6{\underline {E}}^{2}{\underline {a}}^{2}+{\frac {1}{2}}\right){\underline {L}}_{c}^{2}+\left(12{\underline {E}}^{3}{\underline {a}}^{4}+20{\underline {E}}{\underline {a}}^{2}\right){\underline {L}}_{c}+\left(8{\underline {E}}^{4}{\underline {a}}^{6}-16{\underline {E}}^{2}{\underline {a}}^{4}+8{\underline {a}}^{2}\right)=0,} {\displaystyle {\underline {E}},円{\underline {L}}_{c}^{3}+\left(6{\underline {E}}^{2}{\underline {a}}^{2}+{\frac {1}{2}}\right){\underline {L}}_{c}^{2}+\left(12{\underline {E}}^{3}{\underline {a}}^{4}+20{\underline {E}}{\underline {a}}^{2}\right){\underline {L}}_{c}+\left(8{\underline {E}}^{4}{\underline {a}}^{6}-16{\underline {E}}^{2}{\underline {a}}^{4}+8{\underline {a}}^{2}\right)=0,} where underlined parameters are dimensionless in Henon units defined as E _ = E r V / ( G M 0 ) {\displaystyle {\underline {E}}=Er_{V}/(GM_{0})} {\displaystyle {\underline {E}}=Er_{V}/(GM_{0})}, L _ c = L c / G M r V {\displaystyle {\underline {L}}_{c}=L_{c}/{\sqrt {GMr_{V}}}} {\displaystyle {\underline {L}}_{c}=L_{c}/{\sqrt {GMr_{V}}}}, and a _ = a / r V = 3 π / 16 {\displaystyle {\underline {a}}=a/r_{V}=3\pi /16} {\displaystyle {\underline {a}}=a/r_{V}=3\pi /16}.

Applications

The Plummer model comes closest to representing the observed density profiles of star clusters [citation needed ], although the rapid falloff of the density at large radii ( ρ r 5 {\displaystyle \rho \rightarrow r^{-5}} {\displaystyle \rho \rightarrow r^{-5}}) is not a good description of these systems.

The behavior of the density near the center does not match observations of elliptical galaxies, which typically exhibit a diverging central density.

The ease with which the Plummer sphere can be realized as a Monte-Carlo model has made it a favorite choice of N-body experimenters, in spite of the model's lack of realism.[4]

References

AltStyle によって変換されたページ (->オリジナル) /