%On Generalizations of the Stirling Number Triangles, %Wolfdieter Lang February, 11 2000, update May 31 2000 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Latex file with definitions in preamble %%%%%%%%% preamble %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\tolerance=2000\hbadness=2000 %\overfullrule=0pt %\font\sm=cmr10 \documentclass[10pt]{article} \usepackage[usenames]{color} \usepackage{color} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} %\usepackage{amsmath,maplems} \usepackage{amsmath,amssymb,epsf,psfig} \newcommand{\seqnum}[1]{\href{http://oeis.org/#1}{\underline{#1}}} \def\follows{\Longrightarrow} \def\from{Longleftarrow} \def\iff{Longleftrightarrow} \def\binomial#1#2{{#1} \choose {#2}} \def\union{\cup} \def\In{\subset} \def\setin{\subset} \def\Ineq{\subseteq} \def\from{\leftarrow} \def\Na{{\bf N}} \def\N0{{\bf N}_{0}} \def\del{\partial} \def\eps{\varepsilon} \def\x{\ \times\ } \def\sqr#1#2{{\vcenter{\vbox{\hrule height .#2pt \hbox{\vrule width.#2pt height#1pt \kern#1pt \vrule width.#2pt}\hrule height.#2pt}}}} \def\squaretwo{\mathchoice\sqr56\sqr56\sqr{2.1}3\sqr{1.5}3} \def\eop{$\squaretwo$}%%%%%%eop=end of proof%%%%% \def\spequiv{\; \equiv \; } \def\sspequiv{,円 \equiv ,円} %% small space equiv \def\speq{\; =\; } \def\spdef{\; :=\; } \def\spdefr{\; =:\; } \def\spp{\; +\; } \def\spm{\; -\; } \def\sspeq{,円 =,円 } %%%% ssp... for small space ... %%%% \def\sspdef{,円 :=,円 } \def\sspp{,円 +,円 } \def\sspm{,円 -,円 } \def\pb{\par\bigskip} \def\noin{\noindent} \def\pbn{\par\bigskip\noindent} \def\ps{\par\smallskip} \def\psn{\par\smallskip\noindent} \def\pn{\par\noindent} \def\bn{\bigskip\noindent} \def\sn{\smallskip\noindent} \def\Dx#1{\frac {d{\ #1}}{dx\phantom{#1}}} \def\D#1#2{\frac{d{#1}}{d{#2}}} \def\ZZ{\mathbb Z} %%%%%%%%%%%%%%%%% start of LaTex file %%%%%%%%%%%%%%%%%%%%%%%% %\documentstyle[11pt,maplems]{article} old version %\documentstyle[12pt]{article} old version \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo24.eps} \vskip 1cm {\LARGE\bf On Generalizations of the Stirling Number Triangles\footnote {In memory of my mother Else Gertrud Lang.} }\\ \vskip 1.5cm \large Wolfdieter Lang\\ \medskip Institut f\"ur Theoretische Physik \\ Universit\"at Karlsruhe \\ Kaiserstra\ss e 12, D-76128 Karlsruhe, Germany\\ \medskip Email address: \href{mailto:wolfdieter.lang@physik.uni-karlsruhe.de}{wolfdieter.lang@physik.uni-karlsruhe.de} \\ Home page: \htmladdnormallink{http://www-itp.physik.uni-karlsruhe.de/${\ \tilde{}}\ $wl} {http://www-itp.physik.uni-karlsruhe.de/~wl} \medskip \vskip2.5cm \bf {Abstract} \end{center} {\em Sequences of generalized Stirling numbers of both kinds are introduced. These sequences of triangles (i.e. infinite-dimensional lower triangular matrices) of numbers will be denoted by $S2(k;n,m)$ and $S1(k;n,m)$ with $k\in \bf Z $. The original Stirling number triangles of the second and first kind arise when $k=1$. $S2(2;n,m)$ is identical with the unsigned $S1(2;n,m)$ triangle, called $S1p(2;n,m),ドル which also represents the triangle of signless Lah numbers. Certain associated number triangles, denoted by $s2(k;n,m)$ and $s1(k;n,m),ドル are also defined. Both $s2(2;n,m)$ and $s1(2;n+1,m+1)$ form Pascal's triangle, and $s2(-1,n,m)$ turns out to be Catalan's triangle. Generating functions are given for the columns of these triangles. Each ${\bf S2}(k)$ and ${\bf S1}(k)$ matrix is an example of a Jabotinsky matrix. The generating functions for the rows of these triangular arrays therefore constitute exponential convolution polynomials. The sequences of the row sums of these triangles are also considered. These triangles are related to the problem of obtaining finite transformations from infinitesimal ones generated by $x^k,円\Dx{},ドル for $k\in \bf Z$. } \vspace*{+.1in} \noindent AMS MSC numbers: 11B37, 11B68, 11B83, 11C08, 15A36 % comment out the next two lines to restore it to single space %{\large %\setlength{\baselineskip}{1.5\baselineskip} \section{Overview} {\it Stirling's numbers of the second kind} (also called {\it subset numbers}), and denoted by $S2(n,m)$ (or $\left\{\begin{array}{c} n\\m \end{array}\right\}$ in the notation of \cite{GKP}, or ${\cal S}_{n}^{(m)}$ in \cite {AS}, or sequence \seqnum{A008277} in the database \cite {Sloane}) can be defined by \begin{equation} E_{x}^{\ n}\equiv (x,円d_{x})^n\speq \sum_{m=1}^n,円 S2(n,m),円x^m,円d_{x}^{\ m}\ \ , \ \ n\in {\bf N},\label{(1.1)} \end{equation} where the derivative operator $d_{x}\equiv \Dx{}{},ドル and $E_{x}$ is the {\sl Euler} operator satisfying $E_{x},円x^k\speq k,円x^k$. A recursion relation can be derived from eq.~\ref{(1.1)} by considering $x,円d_{x}(x,円d_{x})^{n-1},ドル using the convention $S2(n,m)=0$ if $n,円 (1-k),円m,ドル {\it i.e.} if the coefficient of the first term in the recurrence eq.~\ref{(1.39)} is negative. This will be shown by induction on $m$. For $m=1$ the assertion is true because only the first term in the recurrence is present, and since $s1(k,2-k,1)=0,ドル due to the vanishing coefficient of the first term in its recursion, the recurrence shows that $s1(k;n-1,1)$ vanishes for $n-1= 2-k,3-k,...\ $ (if $n-1=2-k$ the multiplier in the first recursion term vanishes). Assuming the assertion holds for given $m \ge 1,ドル {\it i.e.} $s1(k;n-1,m)=0$ for $n-1,円>,円 (1-k),円m,ドル leads to a vanishing second term in the $s1(k;n-1,m+1)$ recurrence for all $n-1,円>,円 (1-k),円m,円+,1円.$ Therefore, $s1(k;(1-k),円(m+1),円+,円 1,m+1)$ will be zero because the coefficient of the first term of this recurrence vanishes and the second term is absent since $(1-k),円(m+1),円>,円(1-k),円m$. Then $s1(k;n-1,m+1)$ vanishes recursively for all $n-1,円\geq,円(1-k),円(m+1),円+,1円$.\hskip 1cm \eop \vspace*{+.1in} \noindent {\bf Lemma 17:} The o.g.f. for the $m$-th column of ${\bf s1}(k)$ (see eqs.~\ref{(1.40)}, ~\ref{(1.41)} and ~\ref{(1.42)}). ${\bf s1}(k)$ is a Bell matrix (see Note 7 for this name), {\it i.e.} the o.g.f. for the sequence $\{s1(k;n,m)\}_{n=1}^{\infty}$ is given by $g1(k;m;y)\sspeq (g1(k;1;y))^m$ and \begin{equation} g1(k;y)\spdef g1(k;1;y) \speq {\frac {-1\sspp (1-(k-1),円y)^{-(k-1)}}{(k-1)^2}}\ \ \text{for}\ \ k\in {\bf Z}\setminus \{1\}\ . \label{(3.5)} \end{equation} Since we have set ${\bf s1}(1)=\bf 1$ we take $g1(1;y)=y$. \vspace*{+.1in} \noindent {\it Proof}: From the recurrence relation eq.~\ref{(1.39)} we find, for $k\in \bf Z,ドル the first-order linear differential-difference equation \begin{eqnarray} [1-(k-1),円y],円g1^{\prime}(k;m;y)\spm m,円(k-1)^2,円g1(k;m;y)\spm m ,円 g1(k;m-1;y) \speq 0\ \ , \ \ && \label{(3.6)}\\ g1(k;m;0)=0\ ,\ m\in \Na; \ \ g1^{\prime}(k;m;y)|_{y=0}= s1(k;1,1),円 \delta_{m,1}= \delta_{m,1} . &&\label{(3.7)} \end{eqnarray} The prime denotes differentiation with respect to $y$. The $y=0$ conditions follow from the definition of $g1(k;m;y)$ in eq.~\ref{(1.40)}. Eq.~\ref{(3.6)} is solved using $g1(k;m;y) \sspeq (g1(k;1;y))^m,ドル which results in a standard linear inhomogeneous differential equation for $g1(k;y):= g1(k;1;y),ドル namely \begin{equation} [1-(k-1),円y],円g1^{\prime}(k;y)\spm (k-1)^2,円g1(k;y)\spm 1\speq 0 ,,円 \label{(3.8)} \end{equation} with the initial condition $g1(k;0)=0$. The solution is given by equation eq.~\ref{(3.5)} (cf. eq.~\ref{(1.41)}, \ref{(1.42)}).\ \ \eop \vspace*{+.1in} \noindent {\bf Note 10:} Generalized {\it EIS} \seqnum{A001792} sequences. Analogous to the generalized Catalan numbers generated by $c2(l;y)$ of eq.~\ref{(1.23)} (see Note 4), we can use $c1(l;y)$ defined in eq.~\ref{(1.42)} as the o.g.f. for sequences $\{c1^{(l)}_{n}\}_{n=0}^{\infty}$. We find that $c1(1;y)=1/(1-y)$ generates {\it EIS} \seqnum{A000012} (powers of 1), $c1(2;y)$ is the o.g.f. for the sequence \seqnum{A001792}($n$). The {\it EIS} A-numbers for the sequences for $l=k-1$ are found in the second column of Table 3 for $l=1,...,5$ and $l=-1,...,-6$. See also {\it EIS} \seqnum{A053113}. In order to have $g1(1;y)=y$ we set $c1(0;y)\equiv 1$ (see eq.~\ref{(1.41)}). An explicit expression for $c1^{(l)}_{n}$ with $l\in \Na$ is given in eq.~\ref{(1.43)}. Also $c1^{(0)}_{n}= \delta_{n,0},ドル and $c1(-l;x)$ is a polynomial in $x$ for $l\in \Na$. For example, $c1(-3;x)\sspeq 1\sspp 3,円x\sspp 3,円x^2.$ The triangle of coefficients in these polynomials can be found as {\it EIS} \seqnum{A049323} (increasing powers of $x$), or \seqnum{A033842} (decreasing powers of $x$). The explicit form for these coefficients is given in eq.~\ref{(1.44)}. \vspace*{+.1in} \noindent {\bf Lemma 18:} The entries of the matrix ${\bf s1}(k)$ are integers for all $k\in {\bf Z}$. \vspace*{+.1in} \noindent {\it Proof}: The first column of ${\bf s1}(k)$ consists of integers since $c1(k-1;y)$ generates the integers $c1^{(k-1)}_{n}$ given explicitly in eqs.~\ref{(1.43)} and ~\ref{(1.44)}, and $g1(k;y)$ is given by eq.~\ref{(1.41)} (see Lemma 17). The case $k=1$ is trivial. Since ${\bf s1}(k)$ is an ordinary convolution triangle (or Bell matrix) it is sufficient to prove that the first column consists of integers.\hskip 1cm \eop \vspace*{+.1in} \noindent {\bf Lemma 19:} The entries of the matrix ${\bf s2}(k)$ are integers for all $k\in {\bf Z}$. \vspace*{+.1in} \noindent {\it Proof}: Once this has been established, all entries of $s2(k;n,m)$ are nonnegative integers by Lemma 3. For the proof we first substitute eqs. \ref{(1.18)} and \ref{(1.38)} into eq.~\ref{(3.2)}. Define, for $k\in {\bf Z},ドル the signed matrix ${\bf s2s}(k)$ by $s2s(k;n,m):= (-1)^{n-m},円 s2(k;n,m)$. Then eq.~\ref{(3.2)} implies \begin{equation} {\bf s2s}(k),円\cdot,円{\bf s1(k)}\speq {\bf 1}\ . \label{(3.9)} \end{equation} Using the fact that the $s1(k;n,m)$ are integers from the previous lemma (from Lemma 16 they are even known to be nonnegative) this equation allows us to carry out the proof recursively. We omit the details.~\eop \vspace*{+.1in} \noindent {\bf Note 11:} Using Lemmas 16 and 19, eqs.~\ref{(1.21)} and ~\ref{(1.22)} show that $c2(l;y)\sspeq \sum_{n=0}^{\infty},円 c2^{(l)}_{n},円y^n$ defined in eq.~\ref{(1.23)} generates positive integers for all $l\in {\bf Z}\setminus \{0\}$. Their explicit form is given by \begin{equation}\label{E77} c2^{(l)}_{n} \speq l^n,円\prod_{j=1}^{n},円 (j,円l-1)/(n+1)! ~. \end{equation} By definition $c2(0;y)\sspdef 1$. \vspace*{+.1in} \noindent {\bf Lemma 20:} The e.g.f. for the $m-th$ column sequence of the unsigned $k-$Stirling triangle of the first kind, ${\bf S1p}(k),ドル defined in eq.~\ref{(1.36)} for $k\in \Na,ドル is $G1p(k;m;x)\speq \frac{1}{m!},円 (G1p(k;1;x))^m,ドル $m\in \Na,ドル with $G1p(k;1;x)\spequiv G1p(k;x)\speq (k-1),円 g1(k;{\frac{x}{k-1}})$ for $k=2,3,...$ and $G1p(1;1;x)\spequiv G1p(1;x)\speq -,円ln(1-x)$. \vspace*{+.1in} \noindent {\it Proof:} For $k \geq 2$ substitute $S1p(k;n,m)$ from eqs.~\ref{(1.36)} and ~\ref{(1.38)} into the definition of $G1p(k;m;x)$ given in eq.~\ref{(1.46)}. In this way the o.g.f. $g1(k;m;y)$ appears in the desired form. The result for the ordinary unsigned Stirling numbers ($k=1$) is well-known \cite{AS}. \hskip 1cm \eop \vspace*{+.1in} \noindent {\bf Note 12:} Explicit form for $G1p(k;m;x),ドル $k> 1$: eq.~\ref{(1.48)} and Lemma 20. Equation \ref{(1.48)} follows from the o.g.f. $g1(k;m;y)$ in eqs.~\ref{(1.40)} and ~\ref{(3.5)}. This shows that $G1p(k;1;x)\speq -,円\overline{G2(k;-x)},ドル the negative compositional inverse of $G2(k;-x)$ of eq.~\ref{(1.24)}. Inverse Jabotinsky matrices like ${\bf S2}$ and ${\bf S1}$ ({\it cf}. eqs.~\ref{(3.2)} and ~\ref{(3.4)}) have first column e.g.f.'s which are inverse to each other in the compositional sense \cite {Knuth}. \vspace*{+.1in} \noindent {\bf Lemma 21:} Row polynomials for ${\bf S1}(k)$. For $k\in {\bf Z}$ the e.g.f. of the row polynomials $S1_{n}(k;x)\spdef \sum_{m=1}^{n},円 S1(k;n,m),円 x^m\ ,ドル $n\in \Na,ドル and $S1_{0}(k;x):=1$ is \begin{equation} {\cal G}1(k;z,x):=\sum_{n=0}^{\infty}S1_{n}(k;x),円z^n/n! \speq e^{x,円G1(k;z)} \ , \label{(3.11)} \end{equation} where $G1(k;z)\sspeq (-1\sspp (1+z)^{1-k})/(1-k)$ for $k\neq 1,ドル and $G1(1;z)\sspeq ln(1+z)$ are the e.g.f.s for the first $(m=1)$ column sequences of the triangular matrices ${\bf S1}(k)$ . \vspace*{+.1in} \noindent {\it Proof}: Analogous to that of Lemma 9. \vspace*{+.1in} \noindent {\bf Note 13:} $S1(k;n,m)\speq \left[ {\frac{z^n}{n!}} \right ],円[x^m],円 e^{x,円G1(k;z)}\ $ (cf. Note 7). \vspace*{+.1in} \noindent {\bf Proposition 5:} Exponential convolution property of the $S1_{n}(k;x)$ polynomials. The row polynomials $S1_{n}(k;x)$ defined in Lemma 21 for $n\in \N0,ドル satisfy for each $k\in {\bf Z}$ the exponential (or binomial) convolution property shown in eq.~\ref{(1.26)} with $S2$ replaced everywhere by $S1$. \vspace*{+.1in} \noindent {\it Proof}: For fixed $k,ドル compare the coefficients of $z^n/n!$ on both sides of the identity ${\cal G}1(k;z,x+y)\speq {\cal G}1(k;z,x),円 {\cal G}1(k;z,y)\ $.\ \ \eop\pbn {\bf Note 14:} In the notation of the umbral calculus ({\it cf.} \cite{Roman}) the polynomials $S1_{n}(k;x)$ are called associated polynomial (or Sheffer) sequences for $(1,\overline{G1(k;t)}\speq G2(k;t))$. For $k \neq 1$ $G2(k;t)$ is given in eq.~\ref{(1.24)}. Also $\overline{G1(1;t)}\sspeq G2(1;t)\sspeq exp(t)-1 $. \vspace*{+.1in} \noindent {\bf Proposition 6:} O.g.f. for row sums of ${\bf s1}(k)$ triangles. For $k\in {\bf Z}\setminus \{1\}$ the o.g.f. of the sequence of row sums of the lower triangular matrix ${\bf s1}(k)$ is given by eq.~\ref{(1.52)}. \vspace*{+.1in} \noindent {\it Proof}: Lemma 11 and the $g1(k;x)$ result in Lemma 17.\ \ \eop \vspace*{+.1in} \noindent{\bf Proposition 7:} E.g.f. of the sequence of row sums of ${\bf S1p}(k)$ and ${\bf S1}(-|k|)$ triangles. For $k\in {\bf \N0}$ the e.g.f. of the sequence of row sums of the nonnegative lower triangular matrix ${\bf S1p}(k),ドル resp. ${\bf S1}(-|k|),ドル defined in eq.~\ref{(1.36)}, resp. eq.~\ref{(1.37)}, is given by eq.~\ref{(1.55)}, resp. eq.~\ref{(1.56)}. \vspace*{+.1in} \noindent {\it Proof}: Lemma 12 and $G1p(k;x),ドル resp. $G1(-|k|;x),ドル from Lemma 20, {\it i.e.} eq.~\ref{(1.48)}, resp. eq.~\ref{(1.49)}.\ \ \eop \pbn {\bf Note 15:} Row-sums of signed ${\bf S1}(k),ドル $k\in \Na,ドル resp. ${\bf S1s}(-|k|)$ triangles. Here Lemma 12 applies with the e.g.f.s $G1(k;x),ドル resp. $G1s(-|k|;x),ドル given in the first line after eq.~\ref{(3.11)}, resp. in the paragraph after eq.~\ref{(1.49)}. \pbn\pbn \section *{\bf Acknowledgements} The author would like to thank Stefan Theisen for a conversation at a very early stage of this work (Note 6, case $k=1$). Thanks go also to Norbert Dragon who pointed out his web-pages (ref. \cite{Dr}). This work has its origin in an exercise in the author's 1998/1999 lectures on conformal field theory ({\it Konforme Feldtheorie}, Blatt 1, Aufgabe 2, available as a ps.gz file under \htmladdnormallink{http://www-itp.physik.uni-karlsruhe.de/${\ \tilde{}}\ $wl/Uebungen.html} {http://www-itp.physik.uni-karlsruhe.de/~wl/Uebungen.html}). %http://www-itp.physik.uni-karlsruhe.de/${\ \tilde{}}\ $wl/Uebungen.html).\pbn\pbn \begin{thebibliography}{99} \bibitem{AS} M. Abramowitz and I. A. Stegun: {\it Handbook of Mathematical Functions}, Dover, 1968. %\bibitem{Dr} N. Dragon: {\it \htmladdnormallink{Konforme Transformationen}{http://www.itp.uni-hannover.de/${\ \tilde{}}\ $dragon/Group.html}}, ps.gz file: \\ \bibitem{Dr} N. Dragon: {\it \htmladdnormallink{Konforme Transformationen}{http://www.itp.uni-hannover.de/~dragon/Group.html}}, ps.gz file: \\ http://www.itp.uni-hannover.de/${\ \tilde{}}\ $dragon/Group.html, and references given there. \bibitem{GKP} R.L. Graham, D.E. Knuth, and O. Patashnik: {\it Concrete Mathematics}, Addison-Wesley, Reading MA, 1989. \bibitem{Knuth} D. E. Knuth: Convolution polynomials, {\it The Mathematica J.}, {\bf 2.1} (1992), 67--78. \bibitem{Riordan ICA} J. Riordan: {\it An Introduction to Combinatorial Analysis}, Wiley, New-York, 1958. \bibitem{Rogers} D. G. Rogers: Pascal triangles, Catalan numbers and renewal arrays, {\it Discrete Math.} {\bf 22} (1978), 301--310. \bibitem{Roman} S. Roman: {\it The Umbral Calculus}, Academic Press, New York, 1984 \bibitem{S} L.W. Shapiro: A Catalan triangle, {\it Discrete Math.} {\bf 14} (1976), 83--90. \bibitem{SGWW} L. W. Shapiro, S. Getu, W.-J. Woan and L. C. Woodson: The Riordan group, {\it Discrete Appl. Math.} {\bf 34} (1991), 229--239. \bibitem{Sloane} N. J. A. Sloane and S. Plouffe: {\it The Encyclopedia of Integer Sequences}, Academic Press, San Diego, 1995. \bibitem{Sloane2} N. J. A. Sloane (2000), {\it \htmladdnormallink{The On-Line Encyclopedia of Integer Sequences}{http://www.oeis.org}}, published electronically at {\tt http://www.oeis.org}. \end{thebibliography} % comment out this brace when single-spacing %} \newpage %%%%%%%%%%%%%%%%%%%%% start of 4 tables %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{center} {\large {\bf Table 1: Associated k-Stirling number triangles of the second kind}} \end {center} \begin{center} {\large $\bf{s2(k)},ドル $\bf{k\neq 1}$\ \ \ \ $\bf{s2(1)}:={\bf 1}$ } \end{center} \begin{center} \begin{tabular}{|c|c|c|c|}\hline &&&\\ $k$& A-number of & A-number of & A-number of \\ & triangle & sequence of first column & sequence of row sums\\ &&&\\ \hline\hline $\vdots$ &&&\\ \hline &&&\\ -5 & \seqnum{A049224} & \seqnum{A025751} (Gerard) & \seqnum{A025759} (Gerard) \\ &&&\\ \hline &&&\\ -4 & \seqnum{A049223} & \seqnum{A025750} (Gerard) & \seqnum{A025758} (Gerard) \\ &&&\\ \hline &&&\\ -3 & \seqnum{A049213} & \seqnum{A025749} (Gerard) & \seqnum{A025757} (Gerard)\\ &&&\\ \hline &&&\\ -2 & \seqnum{A048966} & \seqnum{A025748} (Gerard) & \seqnum{A025756} (Gerard)\\ &&&\\ \hline &&&\\ -1 & \seqnum{A033184} (Catalan) & \seqnum{A000108}($n-1$) & \seqnum{A000108} (Catalan) \\ &&&\\ \hline &&&\\ 0 & \seqnum{A023531} ($\bf 1$ matrix) & \seqnum{A000007}($n-1$) & \seqnum{A000012} (powers of 1ドル$) \\ &&&\\ \hline &&&\\ 2 & \seqnum{A007318}($n-1,m-1$) (Pascal) & \seqnum{A000012} & \seqnum{A000079} (powers of 2ドル$) \\ &&&\\ \hline &&&\\ 3 & \seqnum{A035324} & \seqnum{A001700}($n-1$) & \seqnum{A049027} \\ &&&\\ \hline &&&\\ 4 & \seqnum{A035529} & \seqnum{A034171}($n-1$) & \seqnum{A049028} \\ &&&\\ \hline &&&\\ 5 & \seqnum{A048882} & \seqnum{A034255}($n-1$) & \seqnum{A048965} \\ &&&\\ \hline &&&\\ 6 & \seqnum{A049375} & \seqnum{A034687} & \seqnum{A039746} \\ &&&\\ \hline $\vdots$&&&\\ \hline \end{tabular} \end{center} \newpage %%%%%%%%%%%%%%%%%%%%%% start of table 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{center} {\large {\bf Table 2: k-Stirling number triangles of the second kind }} \end{center} \begin{center} {\large ${\bf S2(k), k=0,1,2, ...,}$ \hskip 1cm${\bf S2p(k), k=0,-1,-2,... }$} \end{center} %\vspace{2mm} \begin{center} \begin{tabular}{|c|c|c|c|}\hline &&&\\ $k$ & A-number of & A-number of & A-number of \\ & triangle & sequence of first column & sequence of row sums\\ &&&\\ \hline\hline $\vdots$ &&&\\ \hline &&&\\ -5 & \seqnum{A013988} & \seqnum{A008543}($n-1$) (Keane) & \seqnum{A028844} \\ &&&\\ \hline &&&\\ -4 & \seqnum{A011801} & \seqnum{A008546}($n-1$) (Keane) & \seqnum{A028575} \\ &&&\\ \hline &&&\\ -3 & \seqnum{A000369} & \seqnum{A008545}($n-1$) (Keane) & \seqnum{A016036} \\ &&&\\ \hline &&&\\ -2 & \seqnum{A004747} & \seqnum{A008544}($n-1$) (Keane) & \seqnum{A015735}\\ &&&\\ \hline &&&\\ -1 & \seqnum{A001497}($n-1,m-1$) (Bessel) & \seqnum{A001147}($n-1$) (double factorials) & \seqnum{A001515} (Riordan) \\ &&&\\ \hline &&&\\ 0 & \seqnum{A023531} ($\bf 1$ matrix) & \seqnum{A000007}($n-1$) & \seqnum{A000012} (powers of 1ドル$) \\ &&&\\ \hline &&&\\ 1 & \seqnum{A008277} (Stirling 2nd kind) & \seqnum{A000012} (powers of 1ドル$) & \seqnum{A000110} (Bell) \\ &&&\\ \hline &&&\\ 2 & \seqnum{A008297} (unsigned Lah) & \seqnum{A000142} (factorials) & \seqnum{A000262} (Riordan) \\ &&&\\ \hline &&&\\ 3 & \seqnum{A035342} & \seqnum{A001147} (2-factorials)& \seqnum{A049118} \\ &&&\\ \hline &&&\\ 4 & \seqnum{A035469} & \seqnum{A007559} (3-factorials) & \seqnum{A049119} \\ &&&\\ \hline &&&\\ 5 & \seqnum{A049029} & \seqnum{A007696} (4-factorials) & \seqnum{A049120} \\ &&&\\ \hline &&&\\ 6 & \seqnum{A049385} & \seqnum{A008548} (5-factorials) & \seqnum{A049412} \\ &&&\\ \hline $\vdots$&&&\\ \hline \end{tabular} \end{center} \newpage %%%%%%%%%%%%%%%%%%%%%%%% start of table 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{center} {\large {\bf Table 3: Associated k-Stirling number triangles of the first kind}} \end {center} \begin{center} {\large ${\bf s1(k)},ドル ${\bf k\neq 1}$ \ \ \ ${\bf s1(1):= \bf 1}$} \end{center} %\vspace{2mm} \begin{center} \begin{tabular}{|c|c|c|c|}\hline &&&\\ $k$& A-number of & A-number of & A-number of \\ & triangle & sequence of first column & sequence of row sums\\ &&&\\ \hline\hline $\vdots$ &&&\\ \hline &&&\\ -5 & \seqnum{A049327} & \seqnum{A049323}(5,$m$) & \seqnum{A049351} \\ &&&\\ \hline &&&\\ -4 & \seqnum{A049326} & \seqnum{A049323}(4,$m$) & \seqnum{A049350} \\ &&&\\ \hline &&&\\ -3 & \seqnum{A049325} & \seqnum{A049323}(3,$m$) & \seqnum{A049349} \\ &&&\\ \hline &&&\\ -2 & \seqnum{A049324} & \seqnum{A049323}(2,$m$) & \seqnum{A049348}\\ &&&\\ \hline &&&\\ -1 & \seqnum{A030528} & \seqnum{A019590}=\seqnum{A049323}(1,ドルm$) & \seqnum{A000045}($n+1$) (Fibonacci) \\ &&&\\ \hline &&&\\ 0 & \seqnum{A023531} ($\bf 1$ matrix) & \seqnum{A000007}($n-1$)=\seqnum{A049323}(0,$m$) & \seqnum{A000012} (powers of 1ドル$) \\ &&&\\ \hline &&&\\ 2 & \seqnum{A007318}($n-1,m-1$) (Pascal) & \seqnum{A000012} (powers of 1) & \seqnum{A000079} (powers of 2ドル$) \\ &&&\\ \hline &&&\\ 3 & \seqnum{A030523} & \seqnum{A001792} & \seqnum{A039717} \\ &&&\\ \hline &&&\\ 4 & \seqnum{A030524} & \seqnum{A036068} & \seqnum{A043553} \\ &&&\\ \hline &&&\\ 5 & \seqnum{A030526} & \seqnum{A036070} & \seqnum{A045624} \\ &&&\\ \hline &&&\\ 6 & \seqnum{A030527} & \seqnum{A036083} & \seqnum{A046088} \\ &&&\\ \hline $\vdots$&&&\\ \hline \end{tabular} \end{center} \newpage %%%%%%%%%%%%%%%%%%%%%%%start of Table 4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{center} {\large {\bf Table 4: k-Stirling number triangles of the first kind }} \end{center} \begin{center} {\large ${\bf S1p(k), k=0,1,2, ...,}$ \hskip 1cm$ {\bf S1(k), k=0,-1,-2,... }$ } \end{center} %\vspace{2mm} \begin{center} \begin{tabular}{|c|c|c|c|}\hline &&&\\ $k$& A-number of & A-number of & A-number of \\ & triangle & sequence of first column & sequence of row sums\\ &&&\\ \hline\hline $\vdots$ &&&\\ \hline &&&\\ -5 & \seqnum{A049411} & \seqnum{A008279}(5,$n-1$) (numbperm) & \seqnum{A049431} \\ &&&\\ \hline &&&\\ -4 & \seqnum{A049424} & \seqnum{A008279}(4,$n-1$) (numbperm) & \seqnum{A049427} \\ &&&\\ \hline &&&\\ -3 & \seqnum{A049410} & \seqnum{A008279}(3,$n-1$) (numbperm) & \seqnum{A049426} \\ &&&\\ \hline &&&\\ -2 & \seqnum{A049404} & \seqnum{A008279}(2,$n-1$) (numbperm) & \seqnum{A049425}\\ &&&\\ \hline &&&\\ -1 & \seqnum{A049403} & \seqnum{A008279}(1,$n-1$) (numbperm) & \seqnum{A000085} \\ &&&\\ \hline &&&\\ 0 & \seqnum{A023531} ($\bf 1$ matrix) & \seqnum{A000007}($n-1$) & \seqnum{A000012} (powers of 1ドル$) \\ &&&\\ \hline &&&\\ 1 & \seqnum{A008275} (unsigned Stirling 1st kind) & \seqnum{A000142}($n-1$) & \seqnum{A000142} (factorials) \\ &&&\\ \hline &&&\\ 2 & \seqnum{A008297} (unsigned Lah) & \seqnum{A000142} (factorials) & \seqnum{A000262} (Riordan) \\ &&&\\ \hline &&&\\ 3 & \seqnum{A046089} & \seqnum{A001710}($n+1$) (Mitrinovic$^2$) & \seqnum{A049376} \\ &&&\\ \hline &&&\\ 4 & \seqnum{A035469} & \seqnum{A001715}($n+2$) (Mitrinovic$^2$) & \seqnum{A049377} \\ &&&\\ \hline &&&\\ 5 & \seqnum{A049353} & \seqnum{A001720}($n+3$) (Mitrinovic$^2$) & \seqnum{A049378} \\ &&&\\ \hline &&&\\ 6 & \seqnum{A049374} & \seqnum{A001725}($n+4$) (Mitrinovic$^2$) & \seqnum{A049402} \\ &&&\\ \hline $\vdots$&&&\\ \hline \end{tabular} \end{center} %%%%%%%%%%%%%%%%%%%%%%% end of tables %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newpage \vspace*{+.5in} \centerline{\rule{5.4in}{.01in}} \vspace*{+.1in} \noindent {\small (Concerned with sequences \seqnum{A000007}, \seqnum{A000012}, \seqnum{A000045}, \seqnum{A000079}, \seqnum{A000085}, \seqnum{A000108}, \seqnum{A000110}, \seqnum{A000142}, \seqnum{A000262}, \seqnum{A000369}, \seqnum{A001147}, \seqnum{A001497}, \seqnum{A001515}, \seqnum{A001700}, \seqnum{A001710}, \seqnum{A001715}, \seqnum{A001720}, \seqnum{A001725}, \seqnum{A001792}, \seqnum{A004747}, \seqnum{A007318}, \seqnum{A007559}, \seqnum{A007696}, \seqnum{A008275}, \seqnum{A008277}, \seqnum{A008279}, \seqnum{A008297}, \seqnum{A008543}, \seqnum{A008544}, \seqnum{A008545}, \seqnum{A008546}, \seqnum{A008548}, \seqnum{A011801}, \seqnum{A013988}, \seqnum{A015735}, \seqnum{A016036}, \seqnum{A019590}, \seqnum{A023531}, \seqnum{A025748}, \seqnum{A025748}-\seqnum{A025755}, \seqnum{A025749}, \seqnum{A025750}, \seqnum{A025751}, \seqnum{A025756}, \seqnum{A025757}, \seqnum{A025758}, \seqnum{A025759}, \seqnum{A028575}, \seqnum{A028844}, \seqnum{A030523}, \seqnum{A030524}, \seqnum{A030526}, \seqnum{A030527}, \seqnum{A030528}, \seqnum{A033184}, \seqnum{A033842}, \seqnum{A034171}, \seqnum{A034255}, \seqnum{A034687}, \seqnum{A035323}, \seqnum{A035324}, \seqnum{A035342}, \seqnum{A035469}, \seqnum{A035529}, \seqnum{A036068}, \seqnum{A036070}, \seqnum{A036083}, \seqnum{A039717}, \seqnum{A039746}, \seqnum{A043553}, \seqnum{A045624}, \seqnum{A046088}, \seqnum{A046089}, \seqnum{A048882}, \seqnum{A048965}, \seqnum{A048966}, \seqnum{A049027}, \seqnum{A049028}, \seqnum{A049029}, \seqnum{A049118}, \seqnum{A049119}, \seqnum{A049120}, \seqnum{A049213}, \seqnum{A049223}, \seqnum{A049224}, \seqnum{A049323}, \seqnum{A049324}, \seqnum{A049325}, \seqnum{A049326}, \seqnum{A049327}, \seqnum{A049348}, \seqnum{A049349}, \seqnum{A049350}, \seqnum{A049351}, \seqnum{A049353}, \seqnum{A049374}, \seqnum{A049375}, \seqnum{A049376}, \seqnum{A049377}, \seqnum{A049378}, \seqnum{A049385}, \seqnum{A049402}, \seqnum{A049403}, \seqnum{A049404}, \seqnum{A049410}, \seqnum{A049411}, \seqnum{A049412}, \seqnum{A049424}, \seqnum{A049425}, \seqnum{A049426}, \seqnum{A049427}, \seqnum{A049431}, and \seqnum{A053113}.) } \centerline{\rule{5.4in}{.01in}} \vspace*{+.1in} \noindent Received February 11, 2000; published in Journal of Integer Sequences September 13, 2000; minor editorial changes November 30, 2000; fixed OEIS links August 11 2012. \centerline{\rule{5.4in}{.01in}} \vspace*{+.1in} \noindent Return to \htmladdnormallink{Journal of Integer Sequences home page}{http://www.oeis.org}. \centerline{\rule{5.4in}{.01in}} \end{document} %%%%%%%%%%%%%%%%%%%%%%% end of file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

AltStyle によって変換されたページ (->オリジナル) /