partition: Agglomerative Partitioning Framework for Dimension Reduction

A fast and flexible framework for agglomerative partitioning. 'partition' uses an approach called Direct-Measure-Reduce to create new variables that maintain the user-specified minimum level of information. Each reduced variable is also interpretable: the original variables map to one and only one variable in the reduced data set. 'partition' is flexible, as well: how variables are selected to reduce, how information loss is measured, and the way data is reduced can all be customized. 'partition' is based on the Partition framework discussed in Millstein et al. (2020) <doi:10.1093/bioinformatics/btz661>.

Version: 0.2.2
Depends: R (≥ 3.3.0)
Imports: crayon, dplyr (≥ 0.8.0), forcats, ggplot2 (≥ 3.3.0), infotheo, magrittr, MASS, pillar, progress, purrr, Rcpp, rlang, stringr, tibble, tidyr (≥ 1.0.0)
LinkingTo: Rcpp, RcppArmadillo
Published: 2024年10月09日
Author: Joshua Millstein [aut], Malcolm Barrett ORCID iD [aut, cre], Katelyn Queen ORCID iD [aut]
Maintainer: Malcolm Barrett <malcolmbarrett at gmail.com>
License: MIT + file LICENSE
NeedsCompilation: yes
Language: en-US
Materials: README, NEWS
CRAN checks: partition results

Documentation:

Reference manual: partition.html , partition.pdf

Downloads:

Package source: partition_0.2.2.tar.gz
Windows binaries: r-devel: partition_0.2.2.zip, r-release: partition_0.2.2.zip, r-oldrel: partition_0.2.2.zip
macOS binaries: r-release (arm64): partition_0.2.2.tgz, r-oldrel (arm64): partition_0.2.2.tgz, r-release (x86_64): partition_0.2.2.tgz, r-oldrel (x86_64): partition_0.2.2.tgz
Old sources: partition archive

Reverse dependencies:

Reverse imports: modACDC

Linking:

Please use the canonical form https://CRAN.R-project.org/package=partition to link to this page.

AltStyle によって変換されたページ (->オリジナル) /